칼럼12) 그릴 수 있으세요?!
미적분 칼럼을 막 써보고 싶지만... 고3분들은 3모에 집중하고 계실테니 오늘은 비교적 가벼운 주제를 가져왔습니다.
아래 있는 함수 4개 중 몇 개나 "미분없이" 그릴 수 있는지 한 번 체크해보세요! 대부분이 기출된 함수입니다. 관련해서 알아두면 좋을 꿀팁들도 그 아래 적어뒀어요. (3번째 4번째는 꼭 확인해보셔요~...)
1.
다음과 같은 느낌으로 그려집니다.
어떤 함수를 그릴 때, 근을 체크하는 게 최우선사항이죠. sinx가 0이 되는 곳과 x가 0이 되는 곳을 체크해줍니다. x=0에서는 근이 2개인 걸 알 수 있네요.
이 함수가 우함수인 것도 확인이 되어야 합니다. 기함수x기함수= 우함수니까요.
참고로 미분 가능한 우함수는 x=0에서 미분계수가 무조건 0입니다.
아무튼 이렇게 근을 찍어낸 뒤에는 다음 정보를 통해 개형을 그려낼 수 있습니다. y=xsinx에서 sinx 부분은 x가 커져도 -1~1 범위의 값을 가지지만, x 부분은 점점 커지죠. 이에 따라 위 그림처럼 해당 구간마다 sinx가 확대된 느낌으로 그려주시면 되겠습니다.
참고로 이 함수는 기출된 함수입니다.
그냥 수식으로 밀어붙여도 괜찮긴 하지만, 대충 어떻게 생겼는지를 그려냈다면 더 접근이 수월하지 않았을까 싶네요.
답은 5번입니다. 풀어볼 분들은 풀어보셔요!
2.
얘는 다음과 같이 그려집니다.
초록색 직선은 y=x입니다. 점근선이 y=x인 셈이죠.
x가 양수일 때는 y=x보다 아래에서, x가 음수일 때는 y=x보다 위에서 접근할 겁니다. y=x- 1/x을 해석해보면 알 수 있죠. (x가 양수일 때는, x- 1/x은 x보다 살짝 작은 값을 가짐...과 같은 해석이요)
한편 근이 1과 -1임도 알 수 있습니다.
3.
이 예시는 직선과 곡선의 차이함수를 그리는 법에 대해 얘기하고 싶어서 가져왔어요. 참고로 기출된 함수입니다.
답은 586입니다. 풀어볼 분들은 풀어보셔요!
아무튼 얘도 한 번 그려볼게요.
저는 개인적으로 직선과 곡선의 차이함수는 다음과 같이 그립니다. 일단 직선을 먼저 그린 뒤에
얘를 x축이라고 생각하고 곡선을 그립니다.
그러면 얘가 그리고자 한 함수가 됩니다.
저 상태에서 직선을 잡아다가 다시 수평으로 맞춰버리면...
그냥 lnx가 되는 셈이죠. 여기서 x축을 잡아다가 다시 다시 꺾으면...
아까 그린 것처럼 이렇게 되는거구요.
(직선과 곡선이 둘 다 x절편이 1인 상황이라서 꺾어도 x절편은 변하지 않습니다. 원래 꺾었을 때 새로운 x절편은 기존 두 함수의 교점의 x좌표가 됩니다. 차이함수라고 생각하시면 됩니다.)
흠 근데 -1/10이라는 기울기가 드라마틱하지 않아서 뭔가 아쉽네요.
직선 기울기가 -1인 상황으로 바꿔서 설명을 이어가보겠습니다.
직선 y=-(x-1)이 x축이라고 생각하고 y=lnx를 그린겁니다. 이에 따라 그려진 주황색 함수는 y=lnx -(x-1)입니다.
'y축 근처에 가서 왜 짤렸지?!'라 생각하실 수 있는데, 계속 아래로 떨어지는게 맞습니다. y절편은 존재하지 않아요! 그냥 y축과 너무 가까워서 저 프로그램이 표현을 못한 것 같네요.
원래 y=lnx는 기울기가 계속 0에 가까워지잖아요? 점점 x축과 평행해지는 느낌으로요. 그렇지만 점근선이 있지는 않죠.
위에 그린 주황색 곡선 y=lnx -(x-1)는 x축이 직선 y=-(x-1)이라고 생각하고 그린 곡선이므로 기울기가 점점 -1에 가까워져야 합니다. 그렇지만 점근선이 있진 않아요.
이는 차이함수 개념을 이용한 접근인데요, 이 예시 뿐만 아니라 폭넓게 사용됩니다. 나중에 한 번 깊게 다뤄볼게요.
추가해서 알아두면 좋을 점은 곡선에 직선을 더하거나 빼도 볼록성은 변하지 않는다는 사실입니다. 두 번 미분하면 일차항은 어차피 사라지기 때문이죠.
4.
사실 이건 대놓고 '이거 그려봐라' 하진 못할 겁니다. 그렇지만 워낙 많이 나오는 함수라, 그냥 알고 계시는 걸 추천드려요. 관련해서 할 얘기가 두 개 정도 있습니다. 일단 그려보자면...
이런 느낌으로 그려져요.
일단 x가 1보다 작은 부분에서는 음의 무한대로 가는게 자명하죠. 분모와 분자가 다 상황을 그렇게 만들고 있어요.
x가 양의 무한대로 갈 때에는 log가 증가하는 속도보다 x가 증가하는 속도가 더 커서 0으로 수렴합니다. (이 함수가 출제된다면 이건 조건에 주어질 거에요. 아래처럼요)
그 뒤에 미분해서 극값을 찾아보면 x=e일 때 극대가 됨을 알 수 있습니다.
한편 다음 함수도 볼게요.
얘도 미분해서 극대인 x값을 찾아보면 x=e일 때입니다. 밑이 달라졌는데 극값이 계속 e에서 생기는게 신기하죠. 하지만 잘 생각해보면 당연함을 알 수 있습니다.
사실 모든 로그함수는 닮음이에요! 상수배 했을 뿐이죠. 그래서
이 함수는 그냥
얘를 ln2 배 한 것에 불과합니다. 극대가 되는 x좌표가 변할리가 없어요.
한편,
를 그리는 과정을 기울기로 해석해볼 수도 있습니다. 위 함수는 (0,0)과 (x,lnx)를 이은 직선의 기울기를 의미해요. 일단 y=lnx를 그려볼게요.
원점과 이 함수 위의 어느 한 점을 이은 기울기는 증가하다가, 감소하는 양상을 보이겠죠. 최대가 되는 지점은 원점에서 날린 직선이 lnx에 딱 접할 때입니다.
접점의 x좌표는 e이며, 이떄의 기울기는 1/e입니다.
이걸 바로 구하는 법은 아래 링크에 나와있어요!
따라서 함수
는 x=e일 때 극값 1/e를 가집니다.
이와 같이 식을 기울기로 해석하는 것도 종종 쓰입니다. 평가원에 나올 거 같진 않지만, 한 번 생각해볼 가치가 있는 아래 예시를 보실게요.
얘도 단위원 위의 점 (cosx.sinx)와 (-2,0)을 이은 직선의 기울기 함수로 해석한다면, 미분 없이 어디서 극값을 가지는지, 극값은 얼마인지, 개형은 어떻게 그려지는지 전부 알 수 있습니다.
이게 한 주기에요!
주기는 2파이,
x=2파이/3 일 때 극대 1/루트3,
x= 4파이/3 일 때 극소 -1/루트3 이겠네요.
특수각 발견하시면 계산 없이 끝납니다!
준비한 내용은 여기까지입니다. 다음에 또 좋은 칼럼과 자작문제로 찾아뵙겠습니다. 좋아요와 팔로우 부탁드리고,
고3분들은 3월 모의고사 파이팅하셔요!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수능 연기 가능성 있나 ? 나라가 이래저래 왜이러누...ㅠ
-
헉
-
지거국에서 국숭상가로 옮기는 건 다운그레이드인가요? 0
옮긴다면 지거국 비상경 인문에서 국숭상가 비상경 인문으로 가게 될 것 같습니다 집...
-
학교생활 적응에 실패해서 도피성으로 2학기 휴학하고 반수 들어갔는데 도피성이라...
-
신석열의 의료계 정싱화로 인해 입결이 얼마나 떨어질지 ?!
-
덕통사고 당햇다 0
https://youtu.be/8cWaddesKD4?si=n4bc7QQr8STmh6gm 지떠여니
-
알텍 킬러 0
미적 알텍에는 킬러 문항 아직 안빠졌나요?
-
1일 2실모하고 수능날 1 받아올게
-
고1-고2 10모 항상 2떳는데 신성규쌤 신기해 수1,수2 들어도 괜찮을까요?...
-
국어 실모 0
무조건 8시40분터 푸시나요??? 낼 11시반부터 국어실모 풀듯한데
-
탐구제외 하던거 반복해서 ㅈㄴ 지겨울듯
-
뭐하고 계심
-
최저 과목 선택 0
친구가 4년만에 수능판 다시 들어와서 2026수능으로 최저 맞춰서 대학 옮기려고 함...
-
하 진짜 1컷 50 50 50 쳐만들면.. ㅋㅋ 실수하는순간 인생이 망하는데
-
Whale. 0
I will shine the way for you Dont let me drift away
-
작수물리 16번 중성자 헬륨질량 더 큰거 어케알아요? 2
그럴거같긴한데 물리 개념배울때 배우나.?
-
늦잠 자버림 오늘 일어나서부터 수학 지구 한국사 마무리하고 남은 3일 모의고사 +...
-
으흐흐흐 8
일루와잇!!!!!
-
1등급 비율 2.3퍼 말이 됨? ㅋㅋㅋㅋㅋ 솔직하게 수능에 내도 어렵다 소리 나올 거 같은데 ㅌㅋㅌ
-
특모 0
강민웅 특모 파이널2 난이도 어떤가요? 수능에 나오면 1컷 얼마쯤일까요
-
대성 패스 구매하실 분 메가커피 기프티콘 같이 받아요 0
대성 마이맥 패스 구매하실 분 메가커피 쿠폰 같이 받아요! id :...
-
최저 없음 이라고 하는데 아예 응시 안 해도 되는 거 맞죠?ㅠㅠ 괜히 불안해서요..
-
ㄹㅇ 탄탄함 ㅋㅋㅋ 한번 다 읽으면 걍 잊혀지진 않음
-
ㅇㅇ 불가능
-
공유해주실 수 있나요? 마지막 수업에 무엇을 쓸까요
-
우으 피고내 6
사케 마싰어
-
수능이 두렵지 않아
-
여름방학때 메가패스 3개월치 끊어놓은거 기간이 끝나서 메가패스 다시 사고(내년...
-
걍 듣던강의나 마저 다 듣고 갈까요 9덮 1컷 10덮 2컷인데 찍맞도 있을거라 불안하긴하지만…크흠
-
2시 28분 1
아까 열차 놓쳐서 28분 열차라도 타고 꿈나라로 갑니다 ㅋㅋ 다들 잘자용
-
2시 22분 2
자러 간다. 얼버잠
-
phi는 공집합
-
아 피곤해 4
근데 하나도 안 졸려 걍 연속 실모를 벅벅
-
현역때 낮은 지거국이였는데 옆그레이드 되는듯한 기분;;
-
상상컨 인강에서 5-10 독점이신데
-
여쭤보고시픈게 있는데 쪽지 ㄱㄴ???ㅜㅜㅜ급합니드어
-
시발점 들으려다가 강의수가 너무 많아서 이미지쌤 미친개념이랑 수분감 병행하려는데...
-
너무 티 났나. .....
-
작년에는 아빠가 태워다주셨는데 이번 년도에는 불가피하게도 태워다 줄 수가...
-
이감 6-9 1
독서론 3번에서 쳐맞고(나만 어려웠냐 정답률 왜이럼) 6,14에서 쳐맞고 21...
-
뭘로 찍어야되나요?
-
과자사와야지 1
공부 더 해야 해
-
수능전 마지막으로 들어왔는데 독서는 경제가 좀 이슈인거 같고 그럼 경제+과학+인문...
-
123중 제일 쉬운거 아는회차까지 알려주세요~~~
-
The workplaces of electronics engineers are...
-
영어 2 2
최저러여서 영어2는 나와줘야 하는데 기출 시간 재고 풀면 70후반~80초반...
-
그거 보고 성적 잘 받으면 당연히 좋은 거긴 힌데 저격당했을 때 탓할 사람이 나밖에...
-
계속 반복해도 왜 머릿속에 안들어가는거냐ㅠ
-
오공끝 5
자자
-
3025명이 치대+한의대보다 많으니까 약치한 터지는 건가요..?
무민님 칼럼을 읽을 때면
동의하는 부분이 많아서 좋습니다
갑종배당 님은 기하러이신가요 미적러이신가요??
기하럽니다만
수2에서도 써먹을 수 있고
미적도 독학 경험이 있습니다
아하 그렇군요. 무지성 n제 정말 괜찮아보이던데 저는 미적러라 아쉽습니다 ㅜ
이 본문 내용은 수2 다항함수 버전에서도 충분히 적용 가능한 내용이죠 ㅎㅎ
대학교 가니까 미적분학에서 저 명칭으로 배우더라고요..
경사점근선이라는 표현을 쓰는군요. 직관적으로 와닿네요