합성함수 인식부터 치환적분까지
문제 같이 읽어보겠습니다.
뭔가 그림 그리고 싶다는 생각이 듭니다.
이 정도로 그리면 되겠습니다. 노란색 동그라미 친 건 미분계수입니다.
문제를 마저 읽어볼게요
아, f(x)가 아니라 f(2x)래요. 그것도 그려줍시다.
x=1에서 미분계수가 2인거 바로 보이시나요?
이쯤에서 잠깐 딴 얘기로 샜다가 돌아오겠습니다.
(딴 얘기)___________________________________________________________________________________
이건 cos함수에 5x를 합성한 함수입니다.
5x는 x보다 다섯배 빠르게 진행되기 때문에,
cos5x 함수는 cosx 함수에 비해 모든 대응되는 구간에서 다섯배 빠르게 변합니다.
미분계수가 다섯배인 셈이죠.
또 다섯배 빠른 진행속도 덕분에, 함수는 다섯배 축소됩니다.
(딴 얘기 끝)________________________________________________________________________________
이런 이유로, 앞선 문제에서
이렇게 그릴 수 있던 겁니다.
이제 문제 마지막 부분 읽어볼게요.
음.. 이건
f(2x)의 그림만 보고 a는 1이고 b는 1/2이라고 읽으면 됩니다.
긴 설명 대신 그림 2개면 충분할 겁니다.
함수 그림은 냅두고
x, y 축만 샥 바꿔주면 됩니다.
우리가 잘 알고 있는
이 사실을 수식적으로 이해해도 좋지만,
저는 때에 따라 조금 더 기하적인 느낌으로 이해합니다.
이렇게 말입니다.
앞선 예시도 이런거였죠.
하지만 이 얘기는 f(x)와 f(3x)처럼 단순히 일차함수를 합성했을 때만 쓸 수 있는 얘기가 아닙니다.
다음 문제로 넘어가봅시다.
지수함수 f(x)에 대해 다음 값을 구해야 하는 상황입니다.
가독성을 위해 엄밀하게 적지는 않았지만 다 이해하셨을거라 생각합니다.
일단 절댓값 f(x)부터 그려봅니다.
-1에서 미불이고, 이때 오른쪽 미분계수는 ln2입니다.
이제 어떤 빨간 점이 이 곡선경로를 쭉 따라간다고 해봅시다.
이 빨간점은 y=x세제곱 함수의 속도로 곡선경로 위를 움직이는 중입니다.
y=-1일 때, x세제곱 함수의 미분계수는 3입니다.
따라서
여기 -1 부근에서 빨간점은 경로를 3의 속도로 지나가는 중입니다.
아까 문제에서 h'(a+) 구하라고 했었죠.
3의 속도로 기울기 ln2인 구간을 지나는 중이니까 답은 3ln2입니다.
근데 삼차함수에다가 대고 막... 속도 개념을 부여해도 되는걸까요?
또 잠깐 딴 얘기로 샜다가 올게요.
(딴 얘기22)___________________________________________________________________________________
아까 cos 5x는 진행속도가 일정한 경우였습니다.
그런데 진행속도가 일정하지 않을수도 있습니다.
(예전에 제가 썼던 칼럼 일부를 인용해왔습니다)
앞서 언급했던
이 사실이 이러한 이유로
이렇게 인식될 수 있는 겁니다.
시간 있으신 분들은 아래 기출 문제 풀어보세요.
귀찮으면 넘어가시구요
답은 19+20= 39입니다.
알려드린 걸 통해 풀면 인식하기가 훨씬 쉬울겁니다.
(딴 얘기 끝)________________________________________________________________________________
아직 할 얘기가 많이 남아있습니다.
합성함수 인식은 결국 치환적분의 얘기로 이어집니다.
다음 편 링크 남겨드립니다.
0 XDK (+10)
-
10
-
나도 0
실친이 볼까봐 쫄려서 사진은 못 올리겠는데
-
눈물날려그래 자꾸 나 왜이래…
-
ㅎㅎ
-
전체인증은 ㄹㅇ 신상때메 개에바고
-
아루 이쁜듯 1
근데 블아 어케하믄건지모르겟어서걍 안하고잇음
-
골드닌자 돌려죠 0
-
본인 최애곡 2
Ghvstclub-Misfit97 한동안 저것만 듣고 다녔었는데 뭔가 다크한 느낌이라 좋았음
-
이따 오전에 부모님이랑 옷 사러 가기로 해서
-
퓨ㅠㅠ
-
한 하위 40%쯤 뜬 거 갖고 기만하는 거 보면 매우화남 아니 사실 화도 안 남...
-
"그녀석"이 업어서 그래.. 하아..
-
안돼 이제 자야지 ㅃㅇ
-
Ai ㅇㅈ 2
-
외힙답게 마약하셨잖아 ㅇㅇ..
-
잠이 너무 안와서 오르비 들어와봤네요ㅎㅎ 초짜입니다! 25국어 98점입니다(화작)
-
ㅈㄴ 멍청하고 그닥 쎄지도 않은 개트롤인데.불을 무서워하는 불의...
-
연대 펑크 0
연대 이과 빵 어디어디 난것같나요...???
-
ㅇㅈ ㅇㅈ ㅇㅈ 8
ㅇㅇ
-
재밋음
-
빽다방에서옛날커피를사서마실때 천원을내고설탕가득호떡을깨물때 계획표의모든계획에체크표가쳐질때(희귀함)
-
ㅋㅋㅋ그 강사분 조교의 워라벨 알게되었음. 비싼 파스타사주심 굳 사귀진않음
-
내가 그얼굴이었으면 진지하게 맨날 강남 홍대 이태원 갔음..
-
울고 있었다면 다시 만날 수 없는 세상이 멋지지 않았는가
-
지금은 사진 내려서 글이랑 댓글만 남아있는데 특정될까봐 ㅈㄴ 쫄렸음 진짜 사회적체면...
-
제가 좋아하는 스타일들 모음
-
막 아이리스에 나오는 경호원들 같은 사람
-
유빈 4
유빈아카이브 같은 자료방 더 없냐 추천 좀 해줘라
-
ㄹㅇ 맛도리
-
얘도좋구나
-
그런게 가능할까
-
어렸을때 보던 아이리스2 정주행중
-
양악 윤곽 눈 코 이마거상 지방흡입 드가자 ㅋㅋㅋㅋㅋ
-
요즘 소확행 1
내 몸이 버틸 수 있는 최대 따뜻한 온도로 샤워할 때 창문 열면 영하의 한기가 후욱...
-
아줌마 왜 좋아하냐면서 씨부랄 것들
-
언매 커리 누구 들을까. 언매는 김동욱.
-
우와 와 와 5
K~~~C~~~
-
오르비언들이 즐기는 것 27
본인 잘난거 알면서 나 못났어요 ㅠㅠ 하면서 댓글로 욕먹는거 몇명 보면 되게 지능적임 교묘하게 함
-
언어와 매체는 7
어떤식으로 출제되는 걸까
-
공익무조건 뜰거같은데 이미 망한 인생 군대보내서 뭐하게...
-
아깐 오타 남
-
역시 대 이 유 1
최강 동안
-
맞팔구함 2
ㅇㅈ은 조만간 할게요
-
ㅇㅈ할까? 6
말까
-
배가 아파요 ㅠㅠ 15
흐어엉 ㅠㅠ
-
이거 봐 5
사진 마다 다르게 나옴 1.5점씩이나 차이나는데
-
듣기전에는 커뮤에서 어렵다길래 무슨 고능아 전용 빡쎈 강의인줄 알았는데 초반...
-
ㅇㅈ 7
대 가 천
-
딱봐도 연애경험 N>3 인사람들밖에업내..
-
난 ㅅㅂ 왜 못들어봤지 분명 좋은 공교육 강사인데 드릉드릉이라는 말 쓰는게 조금...
오 cos2x 같은 일차항의 계수만 달라져서 합성된 상황만 x축 방향 축소로? 알고 있었는데
이차함수같은 게 합성되어 있어도 되는 느낌이네요
특정한 한 지점에서는 이차함수도 지수함수도 직선으로 근사할 수 있기 때문이라고 생각해도 되겠습니다
무민은좋아요
라끄리식수학적사고ㄷㄷ
https://orbi.kr/00064989284
그동안 쓴 칼럼 리스트입니다. 필요하신 분들 참고하세요
진짜 좋은 칼럼
우와...
식으로 파악하던걸 가시화해주네요
간단하보이지만 누군가 이런걸 정리해주지 않으면 써먹기 쫄리던데 감사합니다!
신기방귀
f(x)를 g'(x)의 속도로 지나가고 있다고 해야 맞을듯
g(x)의 속도 (=g’(x) )로 지나간다는 의미였습니다.
저도 둘 중에 뭘 쓸까 고민했어요
말씀해주신 것처럼
g’(x) 의 속도라 해야 와닿는 거 같기도 하네요
좋은 지적 감사합니다 ㅎㅎ
그러면 "g(x)와 같은 속도“는 어떤가요?
합성함수기울기=각위치 겉속 기울기의 곱
엔축공부하면서 떠올렸던 건데
속도개념으로 볼수도있군요!
goat...
와 제가 이해한방식이랑 거의 유사합니다
정돈된 버전?
남들한테 퍼지는게 아까운 수준의 글이네요
딴얘기, 딴얘기 끝이라고 표현해놓은게 왜이리 귀엽게 보이지ㅋㅋ 잘봤습니다
저 다 봤어요 이제 내려주세요
개추
좋은칼럼 잘보고갑니당