무한등비급수에 관하여
수능에서는 절대로 빠지지 않고 반드시 나오는 유형이 하나 있는데, 이는 바로 도형과 관련된 무한등비급수 문제입니다. 대부분 긴 지문으로 시험지 한 페이지의 거의 절반을 차지하는 이 유형의 문제들은 수능 출제 유형 가운데 가장 풀이법이 공식화되어 있어 푸는 요령만 알게 되면 거의 틀리는 법이 없지만 지문이 길어 문제를 이해하기 어려운 학생들에겐 손도 대기 어려운 난이도로 꼽히곤 합니다. 최근에는 거의 프랙탈 구조의 도형의 일부분을 색칠한 넓이의 극한값을 묻는 유형이 주를 이루며, 객관식 문제로 출제되고 배점은 거의 4점이기 때문에 놓치기는 아깝습니다. 이 유형의 문제는 초항과 닮음비만 구하면 무한등비급수의 합의 공식으로 바로 답이 나오기 때문에, 결국 주어진 도형의 성질을 충분히 활용해 초항과 닮음비를 구할 수 있는 가가 이러한 문제를 풀기 위한 핵심이며, 따라서 이 유형의 문제를 풀 때는 논증기하와 자기닮음의 성질을 이용, 두 단계의 도형으로부터(수치가 직접 주어진 초항을 포함하는 것이 편하다) 닮음비를 먼저 구해낸 다음, 각종 기본도형들의 성질을 이용해 초항만 계산한 후 바로 답을 구하면 됩니다. (물론 넓이를 구할 땐 닮음비의 제곱을 써야 함을 잊어선 안 됩니다.) 이렇듯 풀이 전략이 거의 확정되어 있기 때문에, 최근에 나오는 문제들은 어떻게든 초항과 닮음비를 알아내기 어렵게 하기 위해 갈수록 교묘하고 특이한 모양으로 출제하고 있으며, 사실 아이디어만 있으면 수험생이 직접 문제를 만들기도 어렵지 않습니다.
한편, 이 유형의 문제는 항상 가, 나형에 공통으로 출제되므로 교육과정 개정 이전에는 수1까지의 지식만으로 풀 수 있게 출제되어 왔습니다. 그리고 이는 교육과정이 개정되어 미적분과 통계 기본이 인문계 교육과정에 포함된 이후에도 마찬가지였습니다. 그러나, 최근 수능의 경향이 여러 분야의 지식을 복합적으로 묻는 문항을 선호하고 있는 것을 생각하면, 조만간 이 유형이 새로 포함된 미적분과도 연계될 가능성이 있다고 조심스럽게 추측해 봅니다. 그리고 연계는 주로 도형의 넓이를 미적분을 활용하여 구하는 식으로 이루어질 테지요.
이에 이러한 신유형의 문제를 한 번 구상해 보았습니다. 이전에 이런 유형이 있었는지는 모르겠으나, 제가 아는 한은 없었습니다.(물론 저는 수능을 본 지 한참 된 일개 수학 애호가이므로 최근 시중의 문제집등을 보진 않았습니다.) 신유형이라고 해도 초항을 구하는 데 다항함수의 적분을 사용할 뿐인 단순한 형태이지만, 이러한 유형을 접해보지 않고 논증기하를 통해 닮음비와 초항을 주로 구하던 기존의 문제에만 익숙해져 있다면 다소 생소하게 다가올 수도 있을 것 같습니다. 그러나 기본적인 풀이법은 역시 닮음비->초항 순으로 구한 후 공식을 적용는 것이므로, 이런 유형에 적응만 된다면 오히려 더욱 수월하게 풀어낼 수 있을 것입니다. 이런 문제가 앞으로 모의평가나 수능에 나오기를, 그래서 이 글을 보신 수험생들은 당황하지 않고 멋지게 풀어낼 수 있기를 기대해 봅니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
대학 입학하면 0
20세 새내기 여자아이는 위로 몇살까지 부담 안 갖고 연애 ㄱㄴ?
-
이쁜애들 왤케 많냐
-
아무것도할수있는게없다
-
만년 2,3등급 친구가 (올해 초에 수학 공부 시작하긴함) 다 풀었다는데
-
예비재수생인디
-
어땠음? 합격컷 높으려나
-
부교에서 1컷 48이라는데 어케 생각하심? 세사는 응시인원도 적어서 언급 많이...
-
2년 ㄱㄱ
-
뭐가 있죠
-
지금 지하철 타고 가는중읻데 1시까지 입실인걸 못보고 1:30까진줄 알았는데 1시...
-
한양 상경 1
한양 상경 인문은 ㄱㅊ고 수리 1,3 맞추고 2번 풀이 다 쓰고 정답까지 냈는데...
-
예전 글인데 다시 퍼올립니다 읽고 가슴에서 무언가 와닿았으면 합니다 꿈꾸는 공대생...
-
텔그에서 카관의 0
지금 몇점대에요??
-
한양상경논 2
아 2번문제 1,3,5,9 15까지 구했는데... 코사인 법칙으로 푸는것이라고...
-
어땠음 계산 개많던데
-
별로네 재미없어보임 학교안은 엄청 세련됨
-
다들 생각이 너무 깊어
-
(가) 참정권 - 여성 '제외' (나) 수은 - '포괄 정책' (다) 추상화 -...
-
텔그에 초록불 들어왔다... 제발 탐구병신을 구원해다오..
-
문과 재수 3
근데 문과는 재수하면 어디서 함? 기숙이나 재종가면 탐구는 어차피 인강으로 대체...
-
환산점수컷 0
23때가 비교적으로 수능쉬웠던거로 아는데 왜 제가 보는대학들은 대부분 22,24보다...
-
일단 이력서 열심히 쓰는 중인데 지방에서 겨울 보내고 다시 서울 대학으로...
-
지1 -> 물2 0
이제 현역된 현 고2인데요 지금 내신으로 물1, 지1으로 하고있는데 물리는 적성에...
-
군대가야하는데 종류가 많아서 헷갈리네요 ㅠㅠ
-
멍청이 나형러에게 사배자 나형 전형 부활 점 ㅠ
-
문제는 쉬운듯 하나빼고 다품 미적 마지막
-
시험 내용 지금 말해도 괜찮음?
-
흠ㅋㅋㅋㅋㅋㅋ 솔직히 과목이 너무 쉽긴해서 쫄리네
-
하루에 공부 6~7시간이면 수학은 몇시간 정도가 적당한가요? 3
지금 하고 있는 수학은 수분감 0단계, 학원 숙제 이 두개 하고있는데 수분감...
-
컴 소프트 전전 많이 힘들겠죠…? 생지러라서..
-
대학이 높을수록 길이 많아지는건 맞아도 그게 전부가 아닐뿐더러 오히려 수능을...
-
물화에 비해 표본 크게 안 오른 것 같은데
-
대구물가머노ㄷㄷ 1
칼국수가 5000원이네 칠성시장에서
-
냥대 상경 수리 6
1번 1번 최대 x=8 최소 x=6맞나유?? 구간 [-2,3] [4,8] 나오던디...
-
얼마나 옴? 우리 고사실은 25명중에 5명 옴 ㅋㅋㅋ
-
얼마나있나요? 지금 출발하셧나요? 어디쓰셨나요?
-
장난아냐
-
뭐 이번에 탈출이 가능할진 잘 모르겠는데 나처럼 우연의 연속이 계기가 된 사람이 얼마나 될까...
-
냥대 상경 0
답만 틀리거나 2번에 약수 하나 빼먹은거 과정은 다 맞았는데 부분점수 주나?ㅠ
-
도대체 사랑이 어떤거길래
-
대학들이 하고 싶다고 할 수 있는게 생각보다 없음 15
고개를 들어 용산과 교육부를 봐야,,,
-
이번3월 모집 지원예정인데 만약에 공군 떨어지면 해군 수송 넣을듯요 육군 TOD도...
-
부산시 현역 1
수필 3합4 과탐1개 250명 정도 맞췄대요.. 이 중에 내신 나보다 높은 애들은...
-
ㄷㄷㄷㄷㄷㄷ
-
답안지 걷는데 다들 3문제 다 꽉 채워있었음 오히려 1번에서 판가름날듯
-
근데 이거 변표는 작년기준으로 계산하는거임??
-
지듣노 2
ほら あなたにとって 호라 아나타니 톳테 봐, 너에게 있어서 大事な人ほど...
-
파경 쓴사람 0
다 맞으신분?
4번. 문제가 재밌네요 ㅎㅎㅋㅋ 미통기추가됬으니 이런식으로 내도 될듯
감사합니다ㅎㅎ