[박주혁t FINAL] 수능대비 공도벡문제 풀고갑시다~
[개정수학] wp리뉴얼 full.pdf
우선 풀어보시고요^^ (이과 한정)
네, 오르비클래스 박주혁입니다.
이 문제는 제가 지난번에 올린 무료자료
(확통자료 제외하고 모든문제 해설인강 완강함!)
에 있는 [개정수학] wp 리뉴얼 에 있는 24번문항이고요.
베르테르님이 제공하신 문제중에서, 어디에도 공개되지 않았던 문제이기도 합니다.
난이도가 상당히 있어서
강의듣지 않는 친구들/ 현강친구들의 질문이 꽤나 많았던 (쪽지등으로) 문제입니다.
그래서,
제 수업을 도와주시는 조교님이 완전 예쁘게 지면해설을 써 주셨습니다.
문제 풀어보시고, 해설도 보세요~
네^^ 답은 1번입니다.
마무리 학습에 도움이 되길 바라며,
지면해설 써주신 조교님에게도 감사인사를 전합니다^^
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
시대인재 재종반 0
현 고3 언매 미적 물1, 지1 선택인데 재수하면 언매, 확통, 사회문화,지1로...
-
통합 폐원 되었다는데 어떻게 된건가요? 어디로 합쳐진건지?
-
니들에겐 단순한 사직이지만 누군가에겐 밥줄이라고 간호사들 먹여살려야지 어딜 자꾸 도망가노
-
깡따구 ㅁㅌㅊ임뇨
-
시대에서얻었것중에서 가장값진거임 꼬옥안고있는중
-
현 고2 (예비 고3)입니다. 학교에서 내신으로 화생지 하고 있는데 지구는 공부...
-
변호사들은 의료소송해봐야 의사측만 이긴다고 하고 뭐가맞는거임
-
이젠 대충 먼말인지도 이해됨뇨
-
인팁에대하여 3
인팁의 눈빛 ㅡ,ㅡ ㄹㅇㅋㅋ
-
정상지능이면 누가 대학병원 설거지 하겠노 ㅋㅋㅋㅋ
-
수능 망한 거 후폭풍 옴
-
오르비고닉들이랑 8
현실에서 만나면 어색할까 그래도 1년가까이 본 사람들인데
-
7ㅐ추로 우회해서 쓰세요
-
내취향 여캐일러 9
여캐일러 자주 올려주시는분들 참고해주세요..이런거 위주로 오네가이시마스
-
고등학교 자소서 쓰는데 진로에 대한 노력을 써야 하는데 아직 많은 노력을 하지않아서...
-
그렇구나 대충 일주일 후에 오르비는 울음바다가 되겠구나 3
한탄글 및 누구누구를 저격하는 글(컷 이상하게 추정했다고) 그리고 몇 명은 웃으면서 혼란하겠다
-
토요일에 한양대 오후1 치고 온 현역 뉴비입니다 .....매우 쫄리네요 쨌든 딴에...
-
은근 최신 기출이 많아서 불안하네요
-
전 이번에 지구과학 + 사회문화 본 혼종입니다@.@ 한양대, 경희대처럼 과탐 가산점...
-
딱최저임금만큼돈버는중
-
담배를 후 3
방이 담배로 가득
-
Was interesting?
-
근데 과탐이 개쫄려 백분위 나락갈까봐
-
시대 강기원 선생님과 김성호 선생님의 미적 수업 스타일은 어떻게 될까요? 그리고...
-
이제 거의 일주일 남았네...
-
요즘처럼 교육과정 개편으로 작업량이 많을 때... 쫙 복붙하고 싶은 충동이 자주...
-
님들 땅에 떨어진 거 몇 초 안에 주워먹는 게 ㄱㅊ음? 20
전 그냥 길바닥에 떨어져도 10초 안에 주우면 ㄱㅊ다고 생각함
-
망했뇨
-
ㄷㄷㄷ
-
26뉴런 다 올라왔을때인가 올라오기 시작할때인가
-
공부끝 0
공부안함
-
숙박비 얼마임?
-
왜냐면 잡은 적이 없음뇨 사실 여친이 없음뇨 사실 과제하기 싫은데 똥글쓰고 있음뇨...
-
시험지에는 무조건 1번으로 표기했음 근데 omr보고 쓴 가채점표에는 3이라 써져있음...
-
학교선생님이나 학원선생님들이 모두 고2 모고 기준 80점 이하면 무조건...
-
https://arca.live/b/namuhotnow/122275397?p=1...
-
닭찌 2개랑 김치찌개랑 밥 캬
-
국어3 수학3뜸뇨.. 과탐 화지 할건데 하루에 국수영탐탐 시간분배 어케해야될까요??...
-
답공유 ㄱ
-
국어 그읽그풀vs구조독해(김도훈T)...
-
트럼프가 고립주의적으로 행동하는이유가뭐임? 중국에 관세폭탄+캐나다 멕시코에 관세25%먹이던데..
-
고3,엔수되바라 지금시기에 존나 도살장에 끌려가는 소처럼 있을뿐이다. . .
-
ㅈㄱㄴ 카드면 그이상 눌러줘용
-
제작년 수능(컷 높고 쉬움, 올해랑 비슷) 환산점수 컷 낮음 작년 수능(컷 낮고,...
-
양치하고 달달한 거 먹으면 맛 이상하길래 건빵 먹었는데 이것도 이상하네
-
66일만의 음주 2
는 꼴랑 청하 한잔 이것도 겨우 허락받아서 마심 수술부위 다 나을때까진 먹지말라고 하시네
-
뭐지 아직 덜 큰건가?
구s1의 중심인 0,2t,t 를 직선 l이 지난다고 하셨는데 왜 그런거죠??
방향벡터가 0,2,1 인 직선이 중심을 지나는건 알겠는데 왜 하필 원점을 지나고 방향벡터가
0,2,1 인 직선이 구s1의 중심을 꼭 지나는건지 이해가 잘 안가요.
원점이 왜 갑자기 나온거죠?
중심좌표가 (0,2t,t) 이므로,
중심의 자취를 구하면 x=0,y/2=z/1 인 직선이
됩니다. 그래서 직선이 원점을 지나는 것 이고요~
혹시 몇번정도 난이도로 생각하시고 제작하신건가요?
역시 29번 공도 난이도로 생각하신거겠죠??
제가 제작한것은 아니고 베르테르님이 제작한 문제이고요, 객관식의 탈을 쓰고 있지만 난이도는 29번대비 이지요^^
샘 손해설 생각보다 훨씬글씨체가 깜찍?하시네영 ㅎㅎㅎ 잘보았슴다
조교님이 워낙 깜찍하신 분이라서ㅋㅋ
수능 29번이 이것보다 어려우면 바로 버릴것 같네요.. 베르테르님 넘나 대단..
난이도라던가 문항적중의 의미보단,
멘탈연습하자는 의미로^^
나름 실모기벡풀면서 잘만다생각했는데 불안해지네요... 이정도면 30번급 아닌가요
30번은 미적분으로 연습을^^
난이도가 30번급인가요? 음 그정도인가...
yz평면으로으로 단면화해서 풀면 금방 보이네요. 특히 임의의 t에 대해 성립하기때문에 단면화한 상황에서 S2,S3를 yz에 정사영시킨 원을 S'이라 하고
S1의 중심을 z=1/2y로 이동시키면서 관찰하면서
푸는방법도 있겠죠ㅋㅋ 결국 원 세개 겹친 넓이
구하는게 제일 까다롭네요
네^^ 제시하신 방법도 좋은 방법이네요~
출제자도 그래서 특수한 상황을 주고, 면적을 구할수 있게 한 것 같습니다.
마치 수능이 그러하듯이~
좋은 문제 감사드립니다 박주혁 선생님, 베르테르님~
근데 수능수학에서 이와같은 특수한 상황 외에도 넓이를 구할 수 있나요?그니까 제 말은 원들이 서로의 중심들을 지나 아름답게 딱 3등분이 되는...그런 상황말입니다. 절차대로 풀긴 했지만 애매한 경우를 줄 것 같지 않은 생각이 들어서 풀면서 이와같은 특수한 상황이 예상이 되서요.
이 기출정도까지만 하실수 있다면 될듯 싶은데ㅎㅎ 제생각입니다
곰블릭님ㅋ 이문제 보고나니까
베르테르님이 이 문제에서 영감을 얻어 3d로 확장된 상황을 만드신 것도 같네요~
네, 그동안의 상황을 보면 특수한 상황들을 많이 주긴 했지요~
사실 뭐 그런 상황을 예측해서 풀어나가기 보다는,
조건을 해석하는데 충실하면 어떤 상황이 나오게 되고,
그렇다면 그 상황에서는? 이라고 논리를 전개해 나가는 연습을 하면
될 것 같아요~