(안녕맨)<화요 수학칼럼 - 적분이란? >
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
9. 정적분의 동치 변형 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8742407&showAll=true
10. 외워두면 좋은 면적 공식 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8759526&showAll=true
11. 2차 곡선에서 접선의 방정식 공식화 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8766382&showAll=true
12. 미분이란? : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8776957&showAll=true
cf) <8월 1일 대치동 오르비 학원 개강 안내>
8월 1일 (다다음주 월요일)부터 월수금 8주 커리로 안녕맨의 끝장인강 총정리 & 안녕맨의 손으로 만든 2017 기출시험지 10회 자기시험지 만들기 현강이 시작합니다
관리자님 말씀으로는 오르비 역대 최고의 시설이라고 하네요 (완전 모던하게 꾸몄대요 ㅎ)
학원 위치는 대치동 은마아파트 입구 사거리 교차로 근교 메인대로변에 있습니다
(교차로에서 대치사거리 쪽으로 걸어서 3분거리 ) 주소는 대치동 931-22
시간은 문과 6시~8시 // 이과 8시~10시 구요 한시간은 끝장인강 잠시 휴식후 나머지 한시간은
기출시험지 풀이 하는 수업을 하게 됩니다
8월 1일 첫수업은 무료 강의 인데 그날 오시는분들은 반드시 안녕맨의 손으로 만든 2017 대 수능대비 기출시험지 1회를 풀고 오셔야 합니다 (이과는 http://class.orbi.kr/class/776/ ,
문과는 http://class.orbi.kr/class/777/ 여기서 자료 다운 받으시고 진행하시면 됩니다)
당일 수업 교재는 임시로 대여 해 드립니다(물론 수강 등록을 하시면 무료로 드립니다)
참고로 무료 개강 수업 후 조 추첨해서(네이버 사다리를 돌릴거에요) 문이과 각각 한분씩
컬쳐랜드 문화상품권 1만원권 1매를 선물로 드릴거에요 ㅎ
자세한 정보는 http://class.orbi.kr/group/85/ 여기서 확인하시면 됩니다
아무쪼록 많이 참석해 주셨으면 하는 바램입니다 감사합니다 꾸벅~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
님 얼굴 차은우면요.
-
로망스어 어원일 때 마치 한자어 국어 분석하는 것 같네
-
ㄱ?
-
가채 잘못써와서 틀린거 맞다했을지...그러려면 1.셤지에 틀렸어야함 2.하필 그걸...
-
ㅈㄱㄴ단국 가능인가
-
머리가 나빠서 그런가 3살때 기억이 아예 없음
-
때론 복잡하게 생각해서 돌아가는 것보다 부드럽게 밀고 나가는 것이 더 나은 해결책이 될 수 있음.
-
2026 수능 의대 휴학 내년 신입생들도 할 가능성 높음 >신입 휴학생과 휴학...
-
설수리 뭐지? 3
작년이 413인데 올해는 417도 4칸이네... 표준점수는 내려갔는데 왜 컷은 올라가나요 ㅠㅠ
-
어떤 기분일까.. 비행기 타보고 싶네요..
-
천안아산 사는데 님들이라면 어디?
-
질문 받아요 3
대학 어디 쓸까요도 ㄱㄴ 대신 책임은 못져요 ㅎ
-
그것은 러블리즈 케이 누나
-
. 7
눈앞의 자기이득이나 신경쓰는 한남임? 아니 여대가 그걸 들고있는게 비정상...
-
열차 지연 때매 12
40분에 오는 막차 타야겠네.. ㅠㅠ
-
내가그렇게못되게살앗나… 님들이봣을때는내인성어떰
-
ㅈㄱㄴ
-
ot 보고있는데 ㄹㅇ 믿음이 가네요
-
김젬마 좋음? 8
솔직히 이뻐서 듣고싶음 사설은 계속 1 나오다가 수능때 3개 밀어서 2등급뜸 들을만함?
-
야스를 그렇게나 많이 하나요 연섹대라는 루머 아닌 루머가....
-
작년엔 짜치단 말 들어본 적이 없는 거 같음
-
계속 발전하는 사람이구나..
-
대일굴욕외교드립부터 싸했는데 밑에 민간주도성장드립보니까 더 짜치네… 다른건몰라도 다...
-
이런저런 이유로 싸우고 별 다른 이유없잎자연스럽게 멀어지고 지나고나니 많이 아쉽고...
-
유부초밥마렵노 3
으어
-
진짜 ㅈㄴ 추억이다 ㅋㅋㅋ
-
누가 아깝고 누가 수요마늠?
-
Ova엔딩 좋다 13
세이버!!!
-
왜 합격발표나 추합을 2월에 하지 추합까지 해서 적어도 2월 초에는 끝내주면 좋은데
-
유대종 ovs vs 정석민 매e네
-
승리 ot보는데 1
올해도 말을 잘하시는구나
-
자러 감. 3
눈이 안 떠져요
-
원랜 요약본으로 130곡쯤 집어넣었는데 요약 안하고 다 집어넣어서 200~300곡...
-
토익이랑 이런저런 책 사니까 책 무료가 얼마나 큰 건지 느껴져요
-
team 06인데 40주 한번도 안빠지고 김승리 현강 출석했는데 성적이 크게 오르지...
-
장영준 선생님의 언어학 101을 추천드립니다. 입문서라서 그런지 확실히 좀 책이...
-
사문 최적vs윤성훈 11
정법은 최적 들을건데 사문은 누구 들을지 고민중이에요 최적은 오탈자 많다는 말도...
-
케이온 재밌음? 3
봇치의 대선배라던데
-
딱 사기 직전 상상하는 순간이 제일 행복함
-
리턴!
-
誰かいませんか 2
덕코 선착 1명
-
지금 프사 뭔가 똥테랑 안 어울림
-
안녕하세요 수능 19 27 (28) 29 30 틀렸습니다(19 뺄셈실수, 28...
-
뚝
-
평균 시급이 어느정도됨요..? 생초짜 면접보러오라그랬으면 얼만진 먼저...
-
이 문제 풀어보실분 21
복잡한 수식 ㄴㄴ
-
대박 ㅋㅋㅋ 얼마만이냐 ㅋㅋㅋ
-
야마다 료 9
장발 료
-
기만좀 해볼께요 12
안녕맨님 궁금한게있는데
함수 f a부터 b까지 의넓이가 왜 f를적분한 함수의
함숫값의 차로 구할수있나요?
예를들면 일차함수의 면적을구하는데 이차함수의
함숫값의 차가 일차한수의 면적이되는게 신기해요
일차함수의 함수값은 길이구요 면적은 길이를 두번곱해서 구해요 길이가 1차면 면적은 길이의 제곱이니깐 2차가 되요
이해가 잘않되요
자세히 설명 드릴게요
인테그랄은 원래 무한급수죠 연속된 무한개의 값을 더할때 쓰는거구요
우선 구분구적을 이해할때 길이가 합해서 면적이 되는게 절대 아닙니다
즉 f(x)를 더해서 면적을 만드는게 아니라 아주 얇은 직사각형을 무한개 더해
서 면적을 구한다고 생각하시면 되요
이때 세로에 해당되는게 f(x)구요 아주 작은 가로에 해당되는게 dx 입니
다 직사각형은 가로와 세로를 곱하는데
여기서 가로에 해당되는 dx가 x에 관한 1차식이라고 생각하시면
실제 면적을 구할때는 f(x)보다 한차수가 높아지죠 (적분하게 되면 차수
가 한차수 높아집니다) 그래서 면적이 그렇게 되요
그니깐 함수값이 1차이면 면적은 2차식이 되고
함수값이 2차이면 면적은 3차
즉, 함수값보다 차수가 한차수 높은 면적으로 나옵니다
서로 빼는거는 구분구적의 계산이 위의 칼럼대로 부정적분해서 양끝값더
한것의 차이라는게 증명됬기 때문에 그렇게 쓰는거구요
그거 교과서에 있어요
쉽게 생각하면 되요
F(x)라는것은 0부터 x 까지 f(x) 그래프 아래의 면적을 의미해요
그러니 a부터 b까지의 면적은 0부터 b까지의 면적에서 0부터 a까지의 면적을 빼면 되므로 F(b)-F(a) 가 되는거죠
대학 미적분학1에서 다루는 내용이군요
hello man(bjh)쌤 홧팅!!!! ^^
감쌈다 정답이오쌤님ㅎ
글씨옆에 잇던게 눈에익어서 봣더니 벤젠(C6H6)였어....
와..
미분은 그냥 괜찮네이랬는데
적분은 내가 강의할때 하는말 다담겨있네ㄷㄷ추천합니다 글 정말 잘읽었어요
감사합니다 ㅎ
공감 ㅋㅋㅋㅋ 과외준비할때 다른것도 읽어보구 참고해야겠어요 안녕맨쌤파이팅하세요!
네 약간이라도 도움이 됬으면 좋겠습니다ㅎ 감사합니다
인티그럴?
쌤 궁금한게 책에 나오지도 않았는데
어떻게 깊이있는 개념을 터득하신겁니까?ㅠ
완죤 부럽습니다.. 책에나온개념도
완전히 이해못하는디ㅠ
구지 말하자면 연륜이죠 ㅎ
제가 처음 과외했던 친구가 78년생 고3 3명이었어요 ㅎ
그 이후 5년정도 휘트니스센터할때 빼고는 수학을 놓은적이 없네요 ㅎ
구지--->굳이..ㅜㅜ
아 넵 ㅠㅠ
좋은 글 감사합니다 ㅎㅎ
.도움이 됬다니 다행이네요 ㅎ