(안녕맨)<토요 수학칼럼 - 외워두면 좋은 면적 공식>
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
9. 정적분의 동치 변형 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8742407&showAll=true
cf) 8월 1일 부터 대치동 오르비 현강 개강합니다
끝장인강 총정리 & 수능대비 기출시험지 10회 8주 커리인데
제 현강의 특징은 필기가 전혀 필요 없습니다 모든 필기된 교재는 미리 제공합니다
http://class.orbi.kr/group/85/ 참고하세요
(첫 강좌는 무료입니다 시간되시는분들 오셔서 강의 들어보시고 등록 판단 하시면 됩니다
그리고 그날 오시는분 한명 추첨해서 컬쳐랜드 문화 상품권 1만원권 선물 드릴게요 ㅎ)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국어 영어 교재비가 조온나 아까움 다신 안 사 강민처 모고나 무제,새기분, 우기분...
-
어디갈까요? 건대자전가면 컴공 갈 생각입니다(지금은 중간공 다닙니다) 투표가 안올라가서 재업합니다
-
퀄 뭐가 젤 좋음? 이감오프랑 상상은 샀는데 바탕 한수 강K까지 사서 푸는건 에바겠지..?
-
향후20년 동안 달러 환율 900원되면 나라 떡상함? 1
독일 넘을 수 있음?
-
이 새끼도 만만치 않게 멍청하네요
-
ㅇㅂㄱ 0
ㅇㅂㄱ
-
버니즈 합류 7
후후흫
-
학교 어디가지 0
너무 고민되네
-
얼버기 2
학교가야한다
-
스포스포스포스포스포스포스포스포스포스포스포스포...
-
미치겟네
-
수학 6평 1에 9평 높2였는데 수능날에 운영 꼬여서 개망치고 3도 안뜰까봐...
-
기차지나간당 3
부지런행
-
한 명은 n수생이고 한 명은 대학생인채로 기다려달라 했을 때 흔쾌히 기다려줌??
-
나도 낄래 2
-
한참걸리네..
-
반도체는 반도체 취업 망했다 하고 기계 화공은 이미 망한학과라고 하고
-
잘자요 좋은 꿈 많이많이 꾸세요 행복한 하루 되세요
-
다 자러 갔나 6
심심해서 우럭우
-
247말고 그냥 기숙말하는거임. 올해 신설했다고해서 기대감 잔뜩 안고 갔었음....
-
이젠 뭘해야 칭찬받을수있지
-
3성에 대천사대천사피바 이상현상 6마법사 다 넣어줬잖아 왜 못 까는거야
-
자꾸 말 씹는데
-
경희대 가군 50명쯤 뽑는 신설과임 최근 3일간 표본이 미친듯이 몰려와서 등수 계속...
-
꼭 2026 버전으로 들어야됨? 2026은 보니까 아직 하나도 안올라온 곳도 있고...
-
아무리뒤져도안나와
-
잔다 ㅂㅂ
-
정시 1.1 부터 1.3까지 가나다군 동일함?
-
ㄱㄱ
-
경희대가 국제캠 어문은 적정이 뜨는데 서울캠은 1~3칸 떠요… 다군에 홍대밖에...
-
나 심심하고 외로워여
-
좋은거 같음, 나쁜거 같음
-
여장해봐야지
-
고속이랑 진학사 1
배치표에선 컷보다 높다고 나오고 고속은 연초 나오는데 진학사는 3칸 나와서 써도...
-
잔다 2
르크
-
철학과 복전하기 5
히히
-
ㅈㄱㄴ 꼭 풀커리 타야하나욤..?
-
ㅠ랑 H 이거 한국에서만 쓰는 괴상한 기호래요.. 심지어 유래도 불분명한..
-
의약계열은 수강신청할 때 선착순 때문에 고생할 필요 없나요?? 얼핏 듣기로는 듣는...
-
누가 맞냐 팡일팡일이는 교재 강의 있긴함 구주연마의 서 심찬우말에 공감하는게 EBS...
-
이제야집간다 2
낼 10시 반에 일어나야해 ㅅㅂ
-
러셀 용인 기숙 남학생관 성적표 없으면, 시험전형으로 입학할 수 있는 전형이 있던데...
-
난 왜 여자가 아닌거야 ㅅㅂ
-
솔직히 연고대 0
연고대 쓸만한 성적이 아니지만.. 스나를 하나 정도는 적어볼까 싶다가도 가군에 냥대...
-
짝남한테 17
객관적으로 나 어떠냐 했는데 10명 중에 9명은 너 예쁘다 할 걸 이라고 했으면 그...
-
제곧내 엄기은 3월런칭인듯...
-
슬슬 자러감 3
피곤해서 못버팀ㅇㅇ 다들 아침에봐요
-
미친듯ㅋㅋ
-
화미생사 백분위 91/87/99/97인데 이걸로 건대 높공 되나요
저거 외울시간에 잠자는게 이득
맞습니다 제목 그대로 필수가 아니라 "알아두면 좋은" 이에요
외우는 거 귀찮으면 이런게 있구나 하고 넘어가시면 되구요
근데 비슷한 부분이 많아서 외우는데 그리 어렵진 안을 거에요 ㅎ
현강에서 지도해보면 분모는 6 12 30 (6의 배수)이고 분자는 3승 4승 5승 순이라
금방 암기를 하더라고요
그리고 실제로 모평에서 나온적이 몇번있어서 알아두면 즉답으로 문제를 푸는경우가 많습니다
문과면 외워둬서 나쁠건없는데요 댓글이너무공격적 ㅋ ㅋ
현t도 챙겨가라하시고
감사합니다
하지만 평가는 주관적인거라 모든 분들의견 다 수렴합니다 ㅎ
그게 강사의 기본 자세구요
현우진 선생님도 저거 말해주시나요?? 빡쌤도 말해주셨던 걸로 기억하는데
수분감기벡 '이과'에서도 챙겨가라하세욥
'알아둬도 그냥그런'
무슨 말을 저런 식으로 하나....사회생활 힘들 듯..
저건 필수적으로 외워야 됨 ㅋㅋㅋㅋㅋ 한석원도 저거 기억해두라고 하고 자주나옴 저건
사회생활 가능하세요?
ㅋㅋ
공부하다보면 외워지는 거지요
당장 이번 7월 나형 30번도 3번 공식이 등장하니까요
좋네요
네 이번 칼럼이 그걸 중점으로 쓴거에요 ㅎ
공식이라는건 자주 나오고 쓰다보니깐 관용적인것을 정리한것이니깐요
저는 수학안하는 학생입니다
그래서 글이 좋은진 안좋은지는 모르겠지만 이런칼럼에 학생이 피해보는 일은 있을것같지는 않아보입니다
작년에 불미스러운일때문에 인식이 안좋으신건 알겠습니다. 저도 너무했다 생각은 들고요
근데 학생을 위해 칼럼쓰는글에 공격적인 댓글 (ㅋ , 믿고거릅니다 , 등등) 올라오고 그러는게 너무 빈번하게보이더군요
그런감정or인식으로 인해 보기싫으시면 거르면 될텐데 굳이 왜 글에 들어와서 그런글을 남기는지 모르겠네요
무슨 싸우고싶어서 안달이난 사람같아보여서
보기싫으면 보지마세요 그냥... 그런감정은 개인적으로 글을써서 표현하던가 칼럼에 댓글로 이게 뭡니까...
ㅋㅋㅋㅋㄹㅇ 애같애요
외우는게 쓸모없다니... 전 a(x-p)^m(x-q)^n 일반화해서 외우고 다니는데... 너무들 하시네요..
일반화까지 ㄷㄷ 일반화하면 뭐에여?
am!n!(p-q)^(m+n+1)/(m+n+1)!
이것말고도 일반화해서 외우면 꿀인게 꽤 있어요... 예를들면 cos합법칙?
cos(c)=cos(a)cos(b) + sin(a)sin(b)cos(r) 이렇게요
일반화는 오바인듯 전 많이쓰다가 자연럽게 외워졌는대
사관학교나 경찰대 문제 풀다보니까 많이 필요해서 그냥 외워버렸어요..
교주님이다
유용한 정보 감사합니다.
좋게 봐주셔서 감사요 ㅎ
저거 정말 개꿀입니다..... 왜 저런걸 거부하시는지... 미적분 할 때 저런거 진짜 개꿀인데
도움이 되셨다니 다행이네요 ㅎ
서울 의대간 형도 예전에 꿀팁이라고 알려줬던 건데 까먹고 잇엇던 마당에 감사합니다!
삼각함수도 넓이 알아두면 편한데...
선생님 좌표에서 평면넓이 구할때 신발끈공식에 대해 어떻게 생각하시나요??
필수죠 솔직히 좌표 알때 신발끈 공식이 최고에요 ㅎ
그거 삼각형만되는거죠?? 원점하나걸친
보통 삼각형에서 많이 쓰죠
특히 원점을 포함하면 (0, 0) , (a, b) , (c, d) 일때 1/2 | ad -bc |라는 공식으로 바로 구할수있어요
원점 아니라도 상관 없고, 임의의 다각형에 대해서도 성립합니다
네 맞습니다 ㅎ 참고로 시계 반대 방향으로 배열하면 항상 양의 값을 갖아서
구지 절대값을 할 필요가 없습니다
헐 그랬군요 무조건원점하나걸치고 삼각형만되는줄알았는데..
이미지세탁 ㄱㅇㄷ
솔직히 경우가 어떻든 학생들이랑 소통할때가 가장 기쁩니다
예전에 개인 카페 운영할때랑 수만휘 멘토에 있을때는 하루에 100개 넘는 댓글을 매일 하고 그랬는데
그때가 가장 행복했었네요 ㅎ ( 지금은 기력이 안됨 ㅠㅠ)
감사합니당
^_^ v
2,3,4공식도 필요한가요?? 1번공식은 알고있는데 234는 한완수에 나올법한 공식같아요
저만 모르고 있었던거는 아니죠??
말 그대로 "알면 좋은" 입니다
필수는 아닙니다
선생님
선생님 칼럼 편히 볼 수 있도록 링크 달아주셔서 너무 감사합니다
이렇게 칼럼 제목을 한꺼번에 보니 너무 좋아요
앞으로도 좋은 칼럼 부탁드립니다
전 선생님 강의 스타일 좋아합니다
실제로 확통 강의 재미있게 보기도 했구요
안녕맨선생님 파이팅 !!!
감사합니다 기분 짱이네요!!!
매번 도움되는 칼럼 올려주셔서 감사합니다 !
굳이 여기와서 시비터는 분들은 사회생활 어찌하실지 궁금하네요
감사합니다
저는 솔직히 다들 조카뻘 되는분들이라 그리 연연하지 않아요
그냥 갖고 노시다가 제 자리에만 놓으면 됩니다 ㅎㅎ