미적분 자작문제 하나!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
와 눈오네 1
나 슬리퍼인데.. 발이 ㅈㄴ춥구나
-
다 맞게써도 답안이 교수님 맘에 안들면 합격 못한다는거 진짠가여!?ㅠㅠ
-
안녕하세요 고3 정시생입니다 제가 고2 6모때 수학 높5맞고 고2 8월에 정시로...
-
밤샌다매. 5
님들아. 잠 안잘거라매.
-
ㄱ ㄱㄱㄱㄱㄱ
-
Ebs 기준으로 컷예측하고 ebs가 타사이트보다 백분위랑 표점이 널널해서다<< 라는...
-
아짜증남 0
대충 수능 망쳐서 딴 사람하고 비교되어 슬프다는 글썼는데 이런 글쓸시간에...
-
챔스보자
-
섹스
-
95 100 100 100을 성적표 오류라고 100 100 100 100으로 속임
-
기존 로고가 걍 눈알 심볼이니까 1. 눈알 심볼 그대로에 얇은 선으로 날렵하게...
-
전대 정시 0
54363인데 전대 하위과 정시 지원할만 한가요 언매 미적 생윤 사문입니다
-
전 260-280 사이
-
졸리다 2
바바
-
어렸을때 구몬한자 배우면서 사이비가 한자인걸 깨닫고 충격먹었음 이게 무슨 헹가래가...
-
수능끝나면 연락준다고 했는데 아직까지 연락 없는거보면 사이비한테도 걸러진듯...ㅠㅠ
-
예 예 예 예예예 예 예 예 예 예 예 예예예예~
-
가족 제외 전화 포함해서 전 5:5
-
얼버기 4
-
씹덕만 들어와줘 21
이전 프사랑 지금프사 머가 더 나아?
-
애매하게 고대 붙어서 반수하는 것보다 아예 3떨하고 절치부심으로 쌩4수해서 당당히...
-
누가 글좀 써봐 8
나 심심해
-
고뱃은 설캠으로 따려고 안받음 그래야 합격 실감이 나지 않겠음?
-
맨날 들어도 어른들이시거나 또래 남자애들 뿐이었음
-
맞팔하실분 ㄱㄱ 4
저는 항상 잡답태그를 답니다
-
덕코복권 무서운 진실 11
이렇게까지 1등이 안나온 적도 있다
-
MBTI 인증 0
NOW BEFORE INFJ에서 ENFP로 변화
-
너도 내 맘 안다면 ?
-
심심하다 2
배고프다
-
뭔가 전부 50:50 느낌임 중립적인 사람 ㄷㄷ
-
근데 기분 좋음
-
글 1
말 들어드림
-
인터넷 친구긴하지만 여기서 대화하는 분들중에서 친한분 3분이 인프피임
-
혼자 떠들고 있으면 관심을 한몸에 받고 있는 것 같아서 창피함
-
수능준비하면서 살이 너무쪄서 빼야하는데 계속 먹고싶어요 어떡하죠…
-
작년까진 못봤는데
-
설대 내신 0
평반고~ㅈ반고 내신은 몇점대까지 서울대 내신 BB받나요? 공대가고싶은 생각이...
-
참가자 없어서 참가만 하면 10만원 가져갈 것 같은데 기술이 없어서 기초적인...
-
복권돌리지마제발내꺼야 14
제발
-
사실 칼복학하면 6개월 세이프라고 봐도 되긴 하는데 이거 지금 2주째 고민중임
-
우울해지는 밤 14
왜인지는 몰라도 잠이 오고 mbti정체성까지 알아버리니 착잡해지네요 누군가가...
-
지민정우주정복 2
해동까지 n(<24)시간 남음 ㄷㄷ
-
롤 너무 어렵다 13
해본 게임 중에 젤 어려운거 같아
-
일찍 잠들었다 새벽에 깨고 낮에다시자고…
-
군대 어디로 가야 16
호시노 같은 분대장 밑에서 구를 수 있음?
-
머먹을까 1.불닭 2.간장양념불고기 3.쌀국수밀키트 4.치즈떡볶이밀키트 5.던킨도넛...
-
안 친하면 F고 나 혼자 있으면 반반 이게 맞다.
-
점점 쌓여가면서 풍경 변하는 과정 보는게 ㄹㅇ 참맛인데 말이죠
-
다 자뇨 17
흠.
-
ㅇㅇ? 여긴 아직 비오는데
문제 푸는데 큰 지장있는건 아니겟...지만? g (0)>0 입니다
풀이좀 올려주세요
일단 g (-1)=0, f(x)=f (x) 놓고 시작
(가)조건에서 f (3)=|f'(3)|>=0이므로 결국 f (3)>=0
(나)조건 부등식 왼쪽은 정적분~급수에서 오른쪽 높이잡기한것
거기에 리미트 n무한대 붙이면 바로 오른쪽 식과 똑같이 정적분됨
근데 오른쪽 높이잡기 한게 정적분 값보다 작으려면 그함수는 감소함수여야함
(증가함수면 오른쪽 높이잡기한게 정적분 보다큼)
근데 a,h에 따라 g (x)는 양의실수에서 항상 감소
따라서 x> 에서 g'(x)=f(x)<=0
이제 (가), (나)조건을 합치면 x>0에서 f (x)<=0이어야 되는데 f (3)>=0이므로
f (3)=f' (3)=0이 되야하고 (0에서 극대값이고 그값이 x축과 접함)
f는 최고차항이 음수인 삼차함수 그래프
g (x)는 도함수인 f (x)그래프에 따라 개형을 그리면 최고차항이 음수이고
x=0에서 극대값을 가지고 g (x)=0이 x=3에서 삼중근,x=-1에서 한개 실근을 가져야 |g (x)|가 양의실수에서 미분가능
이제 대입해서 계산하면 답5번
첫줄에 g'(x)=f (x)
도출된 g(x)가 항상 나 조건을 만족하나요? g(x)에서 x=3에서 양음 부호가 바뀌는데 나 조건에서 왼쪽 식에서 a=2 h = 2라고 가정하면 x=2에서 x=4까지의 오른쪽 잡기가 되는데 이때 오른쪽으로 잡아서 생기는 직사각형들의 면적이 x=3 이하에서는 양수이고 x=3 이상에서는 음수인데 이때 x=2에서 x=4까지의 적분값이 크다고 확신할 수 있는지 궁금합니다.
감소하는 형태로 X축 밑으로가면 직사각형의 넓이가 정적분의 넓이 값보다 커지지만 값이 음수이므로 필연적으로 항상 작을 수 밖에 없습니다
아 그렇네요 감사합니다.
댓글다신줄 몰랐네요..ㅈㅅ알람이 한번만 떠서 달빛님이 잘 설명해드림 ㅇㅇ
만약 f의 중근아닌 또 다른 실근이 x>0에서 존재하면 위의 해설과는 다른 결과를 낳을 수도 있지 않나요?
중근아닌 실근이 x>0에서 존재하면 양의실수에서 f (×)<=0라는 조건을 만족시키지 않으니 실근한개는 음수에서 생겨야 하겠져
아 g(x)가 항상 감소하니 맞군요
이 문제 (가) 표현이 마음에 드네요 평소에도 이런 표현으로 문제 나오지 않을까 생각했던 부분인데 굉장하십니다 ㅋㅋ
뭘요 ㅋㅋ 작년수능b 30번 f'(x)=무리식>=0 보고 좋아보여서 절댓값으로 바꿔본 거 뿐이에요
미적자작문제 검색하다 풀어봤는데 정말 좋네요^^
미적분 자작문제 시간되실때 더 올려주세요!ㅎㅎ
문제 되게 좋네요~
감사합니다 자주풀러오세요