[칼럼] 기하 뉴비들을 위한 안내서 Vol.1 (Feat. 베르테르 19번)
게시글 주소: https://orbi.kr/00071670622
부제 - 문제를 "다각도로" 바라보셔야 합니다
안녕하세요, 의대왔다고 입니다.
오늘 칼럼은 기하 문제를 다각도로 바라보고 해결하는 방법에 대해 다뤄볼까 합니다.
기하라는 과목 자체가 선택자 수가 적기도 하고, 그럼에도 기하라는 과목을 선택하시는 분들은 이미 기하를 잘 하시는 분들이 많기 때문에 이 칼럼이 얼마나 많은 분들께 도움이 될 지 잘은 모르겠습니다.
그러나, 혹여나 기하를 그저 "재능의 영역"으로 생각하고 막연히 기피하고 계시거나, 미적에 자신이 없어 선택과목을 변경하시고 싶으신 분들이 약간의 힌트를 얻어가실 수 있으리라고 생각하고, 오늘 칼럼은 그런 분들께 초점을 맞춰 진행해보도록 하겠습니다. 혹시나 나는 미적분 선택자지만, 과외에서 기하도 가르칠 필요가 있다라거나 가르치고 싶다(시급을 올려!) 하시는 분들도 읽어보시면 도움이 되실 것 같습니다. 그닥 딥한 내용은 나오지 않으니(학문 자체가 딥하지 못합니다) 편하게 읽어주시면 될 것 같습니다.
저희가 난이도가 높은 미적 문제를 풀 때는
1. 문제 발문을 몇 개의 친숙한 덩어리로 쪼갠 후
2. 각 덩어리에서 얻어내야 할 단서들을 얻어내서
3. 이를 조합해 나감으로써 해결합니다.
기하의 공간도형 문제들도 위와 비슷한 방식으로 해결해 나갈 수 있습니다.
다만, 문제의 발문을 "쪼개는" 대신, 주어진 입체를 다각도에서 관찰함으로써 저희에게 친숙한 상황들을 관찰하고 이로부터 필요한 정보들을 얻어냅니다. 이 내용을 조금 더 자세히 설명하기 위해 아래 문제를 분석해보도록 하겠습니다.
다음 문제는 기하를 공부해 보셨더라면 한번쯤은 들어보셨을 그 악명 높은 "베르테르 77제"의 19번입니다.
(시작부터 장난질이냐 라는 생각이 드실 수 있지만, 문제를 차근차근 여러 각도에서 바라보면 해당 문제가 그닥 빡빡한 문제는 아니라는 것에 동의하실 수 있으실 겁니다.)
위 문제를 끝까지 읽었을 때, 다른 조건은 그래도 머리에 좀 상황이 그려지는 방면, 정말로 물음표만 띄우는 발문이 하나 있을 것입니다. 바로 아래의 발문이죠.
해당 상황을 주어진 그림에 그대로 표시해보면 아래와 같습니다.
이걸 그리고 난 다음에 드는 생각은... "대체 어디가 A'T가 최대가 되는 지점일까" 라는 것입니다.
이 조건을 분석하기가 까다로운 이유는, 선분 A'B'과 점 T가 움직이는 원주가 한 평면 위에 올라가 있지 않기 때문입니다. 가령, 선분 A'B'과 점 T의 자취가 한 평면 위에 있었다면, A'T기 최대가 되는 점 T의 위치는 A', B', T가 한 직선 위에 있을 때가 될 것입니다.
그럼 이제 여기서 멘붕이 옵니다. 저 원주를 A'B'이라는 선을 포함하는 평면상에 정사영시켜서 타원을 만들고... 그게 일직선이 되는... 근데 높이는 또 고려해야 하는데... 머리가 아프죠.
근데 위 문제 상황을 아래와 같이 다른 각도에서 관찰하면 어떨까요?
위 상황을 평면 beta를 밑면으로 두고 관찰한 것입니다. 이 때, 점 A'을 평면 beta 위에 정사영시킨 점을 점 H라고 하면, 위 문제 상황을 아래와 같이 관찰할 수 있습니다.
이러면 H B' T가 한 직선 위에 있을 때 A'T의 길이가 최대가 됨을 직관적으로 쉽게 알 수 있게 됩니다.
그럼 아래와 같이 (나) 조건을 쉽게 분석할 수 있습니다. (밥아저씨가 된 기분이네요)
이제 구하라는 것을 구해서 답을 내보도록 합시다. 구하라는 것은 아래와 같습니다.
(어떠한 도형의 다른 평면으로의 정사영의 넓이를 구하는 방법도 크게 두 가지가 존재합니다. 이는 나중에 다른 칼럼에서 찾아뵙겠습니다.)
이 때, 주어진 문제 상황을 평면 alpha와 beta가 모두 일직선으로 보이게 되는 각도에서 관찰하면, 아래와 같은 모습이 보일 것입니다.
위 그림을 통해 AB와 PQ의 길이가 같고 평행하며, AB와 B'B가 수직함을 이용하여 원래 삼각형 ABB'의 넓이와, 삼각형 ABB'을 포함한 평면과 평면 alpha의 이면각을 알 수 있습니다.
따라서, 구하는 넓이 S는 아래와 같습니다.
풀이의 사고 과정을 차근차근 따라오셨다면, 이해가 가지 않는 부분이 딱히 있었을 것 같진 않습니다. 다만 물음표는 생길 수 있는데, 가령 아래와 같은 질문이 생길 수 있죠.
"야 너는 저걸 어떻게 평면 beta를 깔고 볼 생각을 했냐? 역시 기하는 재능이야."
위 생각을 하게 된 과정은 다음과 같습니다.
1. 저희는 원주 위를 도는 임의의 벡터를 다른 평면에 정사영시킨 벡터를 가지고 최대/최소를 논한 적이 단 한번도 없습니다. (못할걸요 애초에)
2. 그럼 A'B'을 원주가 있는 평면 위로 정사영 시켜봐야겠다는 생각이 자연스럽게 따라옵니다. 이 때 A' B'은 모두 고정점이기 때문에 정사영 시켰을 때 기존 문제 상황 대비 동점이 더 늘어나지도 않으며, 저희에게 "친숙한" 그 문제상황이 나타나기 때문에 옳은 방향을 잡았다는 것을 느낄 수 있습니다.
해당 문제의 풀이를 한 페이지에 정리하면 다음과 같습니다.
뭔가 상당히 복잡한 사고 과정을 거쳐간 것 같지만, 막상 저희가 한 일은 주어진 문제 상황을 다각도로 바라보는 것 그 이상 그 이하도 아니었습니다. 풀이 과정도 막상 계산하고 쓸 건 별 게 없죠. 이게 미적과 비교했을 때 기하의 엄청난 장점이라고 생각합니다.
다만, 주어진 상황을 3D 모델링 마냥 머리에서 빙글빙글 돌려가면서 관찰하는 것이 부담된다면, 권하기 힘든 과목인 것 같습니다. 장단이 명확하죠.
(위 풀이과정을 따라오시면서 요리보고 조리보고 알 수 없는 둘리 둘리 하셨다면 기하런은 지양하시는 게 좋습니다. 뭐 당연한 얘기를 이러고 길게 써 놨냐 하신다면 표점 vs 안정 1을 두고 잘 저울질하셔서 현명한 선택을 하시길 바랍니다.)
사실 이제까지 기하 문제의 해설은 그림 1개, 약간의 계산, 답으로 이루어진 것이 가장 아름다운 해설이라고 생각해 왔었습니다. 그러다 문득 그 아름다움에 남들이 공감할 수 없다면, 과연 그것이 진정으로 아름다운 것일까 라는 생각이 들었고, 논리 과정을 자세히 풀어서 써 본 칼럼을 작성하게 되었습니다.
기하를 사람들이 막연히 어려워하는 이유 중 하나가, 잘하는 사람들이 풀어둔 풀이에서 "도통 어떤 흐름으로 사고가 진행되었는지를 읽어낼 수 없다"인 것 같습니다. 그래서 앞으로도 종종 위와 같은 칼럼들로 찾아뵐 예정입니다.
"기스퍼거 저 놈의 머릿속은 도대체 어떻게 생겨먹었는가"에 대한 궁금증이 있으셨던 분들은 한 번씩 들러주시면 감사할 것 같습니다.
미적, 공통 관련 칼럼도 하고 싶은 이야깃거리가 생기면 잘 정리해서 들고 와보도록 하겠습니다.
긴 글 읽어주셔서 감사드립니다.
(좋아요와 팔로우는 사랑입니다. 이 사람이 더 많은 칼럼을 쓸 원동력이 됩니다!)
0 XDK (+1,000)
-
1,000
-
Meme vs 2
당김
-
진짜 별게 다 밈으로 만들어지네 ㅋㅋㅋㅋ 첨알았음요
-
근데 귀여운걸로 카나 아무도 못이김
-
특정해줄 친구가 없음
-
금전적으로도 꿇리지 않고 학벌도 나쁘지 않잖아 - 반수하는 친구 - … 근데 내...
-
내신 반영 대신 4
올림피아드 성적등도 반영되면 좋지 않을까? KMO 중등/고등 KMC 성대 HMC...
-
sam-572 0
미쳤다 ㄷㄷ
-
아니다 너무 선넘이다
-
야동 칼럼) 8
야구 동영상 칼럼
-
옯창, 게이, 의대, 10수, ㅇㅈ, 메디컬, 비갤 12
이거 오르비 조회수버튼 맞죠?
-
나의 대학을 함부로 특정할수 없는거자나 알고보면 내가 지방4년제일수도 현역설의...
-
답변 감사합니다.
-
서너달 지냈고 정보가 많이 없더라고요 생각나는 거 다 쓸 거라 깁니다 이글도 서치가...
-
아침 8시부터 밤10시까지 n제, 과제 벅벅하기..흐흐... 옛날에(?)...
-
외쳐 대킹버드 1
오르비의 정상화 대 킹 버 드
-
수분감 다음 2
뉴런 하는게 정베인가요? 스텝1까지만 다품
-
우흥~
-
영어는 고정1임
-
개추 1
드디어 풀렸구나
-
게이밍 노트북왔다 28
-
센츄... 0
리 스프!!!
-
나도 뱃지 달면 1
은테 벗어날지도..? 칼럼도 쓴다면..?
-
꼭해야함
-
재수학원 0
아파트 1층부터 건물 앞 신호등까지 5분
-
1+1=3
-
자율전공인데 성적제한이 있음 그레서 내가 1지망으로 원하는 학과에 들어갈수 있을지...
-
올해안에 금테 1
가능할까여?
-
8시간 하니까 5
못하겠다 쉬면서 오르비에 글싸지르고 다시 수학하고 ㅠㅠ죽겟네
-
생명과학 좋아해서 생1 공부할 때 내용자체는 재밌어하는 반이과틱?한 사람인데 윤리,...
-
사망직전 2
-
서로 비밀로 하기로함 ㅎㅎ
-
[단독] 미국행 러시는 없었다…'사직 1년' 전공의들 어디에 5
[앵커] 병원을 떠난 전공의들 사이에선 미국으로 건너가 의사를 하면 된다는 반응도...
-
제가 뉴런 내용을 확실하게 체화 하고있는지 알고싶습니다. 혹시 방법이 있을까요
-
쉽지 않나요 심지어 프사도 같은걸로..
-
공부 많이 했는데 오늘..
-
다들 공부하다가 0
한번씩 정신병 올 것 같을 때 어떻게 대처하나요?
-
"대학 절반만 갈래?"
-
왕복 두시간임 광역버스 타고 지하철 갈아타서 가는 학원은 수능날까지 체력이 너무...
-
불쌍하네
-
아무리봐도 안할 이유가 없는데
-
다른과목 봐도 서울대갈정도의 실력이 아닌거같은데 허구한날 내신 cc인가요 bb인가요...
-
맞팔구 2
ㄱㄱ
-
전담
-
(서울대 합격 / 합격자인증)(스누라이프) 서울대 25학번을 찾습니다. 0
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
외계인 느낌남 에일리언도 아니고 ㅡㅡ
-
고1~고3까지 국영수(미기확 다) 통과 통사 포함하여 수능보다 쉽게 봐서 평가하는...
-
https://orbi.kr/00072134399#c_72134635 요거 쓴...
-
매수업마다 덤앤더머찍음 어이거왜안되지 어이거왜계산안되지 어뭐지...
-
전 사격선수 하고 싶었는데, 가정을 부양해야할 의남자는 전문직이나 대기업 혹은 자기...

헉 ㄷㄷ 귀하신 분이 누추한 곳에... 감사합니다!
감사합니다 ㅎㅎ기하칼럼은 좋아요

감사합니다!!기하에 관심은 없지만 동정의 의미로 좋아요
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 아... 슬프지만 감사합니다... :)

이륙ㄱㄱ
감사합니다!
기하 유입 많이 많이 해주세요!!최고로 멋있어지는 방법!!

기하가 진짜 매력 터지고 멋있는 과목이라고 생각합니다. ㅎㅎ
신그저 시호님의 발자취를 걷고 있을 뿐입니다...

이거보고 확통 하기로 했다ㅋㅋㅋㅋ 우리 기하 많이 사랑해 주세요... 감사합니다!
기하해야되나

저희 기하 착해요 안 물어요현역이라 수능 기하치면 공통미적확통기하를 다 해야돼요ㅠㅠ
그럼 이참에 논술로...!
현역 화이팅입니다 ㅠㅠ 할 게 넘 많죠
읽어주셔서 감사합니다!
정성이 들어간 글 잘 읽었습니다 :)
기하 1등급으로서 너무 강추합니다 아주 좋아요
ㅎㅎ 기하가 잘 맞으시는 분들은 정말 편하게 1등급 받아가실 수 있다고 생각합니다

일단 모를 땐 xyz 3방향으로 단면화하기..이것도 아주 큰 도움이 되죠 ㅎㅎ 다음에 관련 내용으로 칼럼을 작성해볼 예정입니다

좋네요좋아해주셔서 감사합니다 ㅎㅎ!
미적러지만 개추

ㅎㅎ 읽어주셔서 감사합니다!
고트잖아 ...그저 "범부"일뿐...
방금정독했는데벽느껴져요
어질어질합니다
ㅎㅎ 열심히 써 봤습니다 감사합니다