수1 도형 특강
나오는 도형은 삼각형과 원 두 가집니다. (짜피 다각형도 삼각형 합친거)
대충 살펴보고 바로 문제로 가겟슴미다.
1. 삼각형
완전히 결정된 삼각형인지 아닌지를 빠르게 판단하는게 중요함미다, 삼각형의 결정 조건을 보면,
SAS, ASA, SSS 등의 조건들을 알고 있으면 그 삼각형을 결정되었다고 할 수 있겠죠.
다만, 저것보다 문제 풀 때 중요한 사실은 닮음조건 + 길이 하나 면 삼각형이 결정된다는거죠. (길이가 크기를 결정)
즉 AA, SAS, SSS 등의 닮음 조건이 있을 때 삼각형의 길이 하나만 알면 완전히 아는 삼각형이 된다는 겁니다.
2. 원
사인법칙을 생각하면 됩니다.
a/SinA = 2R. 즉, 대응변과, 대응각, 반지름 3개 중 2개를 알면 하나를 알 수 잇다는 것만 기억하면 됩니다.
3. 문제 보기 흐흐
이렇게 쓴거 보고 이해가 됏으면 도형이 문제가 안 되겟죠. 문제로 살펴봅시다.
아까 어떤 오르비언 분이 올린 문젠데 이 문제로 같이 확인해보죠.
우선, 우리가 아는걸 정리해봅시다.
1. 반지름, 2. 각 BAD, 3. AB/DA, 4. BE/ED.
Step1) 1번과 2번을 알고 잇으니, Sin법칙을 통해 BD의 길이를 알아낼 수 있다는걸 바로 찾아야합니다.
Step2) Step1을 거치고 난 뒤 보면 삼각형 BAD는 이제 삼각형이 결정되었음을 알 수 있죠.
왜냐면, 3번 조건 AB/DA, 2번 조건 각 BAD를 알고 잇으니
이 삼각형은 SAS 닮음 조건을 만족합니다.
ㅇ여기서 Step1을 통해 BD의 길이를 알아냈으니 삼각형이 결정되었죠.
따라서 Cos제2법칙을 쓰면, AB, AD의 길이를 알 수 있을 겁니다. (삼각형 BAD에 대한 모든 정보를 알 수 있는 상태니 당연히 넓이도 알 수 있음)
이 아래서부턴 도형뿐만 아니라 모든 수학 문제에 해당하는 내용임미다.
Step3) 우리는 이제 BCD라는 삼각형만 알아내면 문제가 풀림을 알 수 있습니다.
우리가 아는걸 정리해보면, BD의 길이 각 DCB의 크기를 알고 있죠.
즉, 삼각형이 결정되기 위해선, (BC/CD)의 비율을 알면 될껍니다.
여기서 막히면 안 되고 당연히 이제 안 쓴 조건을 확인해 봐야할 때입니다.
확인해보면 BE/ED를 안 썼다는걸 알 수 있죠.
그럼 BE/ED를 통해 BC/CD를 알아내야한다는 건데 이 과정은 다음과 같이 진행하면 됩니다.
BE/ED=|BEA|/|AED|=AB*sin(alpha)/AD*sin(beta)=(AB/AD)(BC/CD) (alpha, beta는 각각 각 BAE, 각 EAD.)
그럼 이 과정을 어떻게 생각해내냐 라는 질문이 생길껍니다.
I) 피지컬
사실 위 과정이 생각못할 만한 정도는 아닙니다. 충분한 피지컬이 잇다면 그때 그때 뚫어내면 됩니다.
다만 그만한 피지컬을 키우는건 쉬운 일은 아니겠죠.
II) 풀엇던 문제 분석
하지만 피지컬을 키우지 못했더라도 상관 없습니다.
왜냐면 우리는 이미 이 문제를 봤기 때문이죠.
즉, 저 상황에서 BE/ED, BA/AD, BC/CD 3가지 중 2가지를 알면 나머지 하나를 알 수 있다.
또는, BE/ED를 넓이의 비율로 바꿔낼 수 있다. 정도만 확실히 기억해놓으면 다음에 같은 상황에 빠르게 풀어낼 수 있는겁니다.
또한 이거를 공식으로 창조해내서 나의 도구로 만들어놓을 수도 있겠죠.
마지막은 역시나 cos제2법칙으로 길이들을 알아내면 됩니다.
4. Skill?
i) BE/ED=(BA/AD)*(BC/CD)
위에 Step3를 공식으로 바꿔내면 이런 공식이 됩니다. 외우기도 쉬운 공식이니 쓸데가 있을 겁니다.
사실 저번에 이 공식을 글로 써서 올렷는데, 반응이 차갑더군요 ㅇㅅㅇ;;.. 쓸데 잇어보인다니깐....
ii) 브라마굽타 공식.
원에 내접하는 사각형의 변의 길이가 a,b,c,d일 때 다음 공식이 성립한다
(사각형의 넓이)=sqrt((s-a)(s-b)(s-c)(s-d)) (s=(a+b+c+d)/2).
이걸 알면, Step3이 끝났을 때 a,b,c,d들을 알아내고 삼각형으로 쪼갤 필요 없이, 넓이를 구해낼 수 있겠죠.
공식이 복잡해보이지만 막상 써보면 계산이 오래 걸리지 않고, 도구가 많아서 나쁠건 없습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사회나가서 고등학교 자랑하기 무슨 심리로 하는건지 이해가 안됨
-
아 머리아퍼 2
왜 아픈가 했더니 잠을 안자서 그렇구나 잠은 안오고 뭘 해야하는거지…
-
등록금개비싸네 1
여행경비짜면서 갑자기생각남
-
고등학교 ㅇㅈ 7
진짜 좆반고네 …
-
학벌은 마치 6
.
-
잘쓰면 캐리하지만 잘못쓰면 좆되는거지 ㅇㅇ
-
팔로워삭제라고하나 아니면 차단인가?
-
세지 씹노베 이제 시작하려는 반수생인데 핵심기출 교재 보니깐 짧은 시간에 끝낼 수...
-
달은 파랗다 4
블루문
-
몇도짜리를 먹어도 알코올이 들어가면 무조건 3-4시간만에 일어남 몇시가됐던간에.....
-
고등학교 ㅇㅈ 6
나름 순위 높네
-
ㅋㅋㅋㅋㅋㅋ 3
전적대가 어딨는 대학인지 검색해봤는데 아ㅋㅋㅋ 걍 내가 바보였던걸로~
-
부산 여행 0
실시간 새벽 바다
-
학벌이라는 틀이 0
사회가 교육이라는 자원을 투자할놈과 투자하지않을놈을 가려내는 가지치기라는 생각이...
-
화2 기체 2
화1 잘 되잇으면 좀 편하긴 할 듯.근데 안해도 상관없는 듯함
-
칼바람 포함 그 귀한 늅늅이
-
거지키우기 9
무한의 성장판 표창키우기 이런게임은 진짜 특이점 한번 찍으면 걍 게임 켜두기만 하고...
-
탱커, 브루져만 안하면 될 듯.탱커로 시작하면 맞는게 익숙해져서, 무빙이 구려짐
-
ㅇㅇ
-
여기 수험생들 중에 저같은 미자가 얼마나 많은데 ...
-
수학 검토 연습 안한거
-
열등감은 남을것같음 걍 남의말에 너무 자격지심을 잘 느낌 지기싫어하는 성격과...
-
예쁘게 한 방 쯧쯧
-
고2 마더텅 한번 풀어보는거 괜찮나요? 비문학 공부는 따로 해본 적 없습니다..!
-
25수능 지1지2 응시자였습니다만 올해 지1은 가져가고 지2는 가차없이 버렸습니다...
-
대표적으로 보면 삼차함수기준 ax^3+bx^2+cx+d 또는...
-
여자랑잘때에어컨틀고이불을혼자서독차지해
-
어른들은 학벌이 전부가 아니라고 말씀하시지만 그래 전부가 아니지, 하고 입시판을...
-
국어 공부하는데 빨더텅처럼 모고형식인게 좋을까요 검더텅처럼 유형?별로 나뉜게 좋을까요
-
아 배고프다 0
벌써 2시간째 공복이야 ㅠㅠ
-
제곧내
-
고스트클럽 제발들어라 21
-
와 이게 되네 7
거의 망하려던 참이였는데 결국
-
아 감긴가 8
마른기침 준내하는중
-
라이브인데 미루다가 3,4주차 추가영상을 못 봤는데 혹시 따로 구매할 수 있는 방법이 없을까요ㅠㅠ?
-
커버는 무시하세요
-
난이도 꽤 잇는 문제 대가리박기 하는건 진짜 개꿀잼이다 ㅋㅋ
-
...
-
안녕히주무세요 1
요즘잘자쿨냥이모드취침
-
ㄱㄴㄷ로 내면 될걸 매번 채점으로 내는지 모르겠는 유형 1 글이 없어도 전혀 상관이...
-
현실안주vs그래도한번더해보자 사실 안주도 아니야 그냥 합리화지 결국 서울대에 못간...
-
학교 다니면서 반수할 수 있을까 동기들한테 들키기 싫은데
-
난 솔직히 기만글은 별 거 없는 사람이 약간 눈살 찌푸려질정도로? 온몸비틀면서 기만...
-
1. 독재- 잇올, 이투스247 이번 수능 국어백분위99로 ㅈㄴ잘나왔는데 현역 때...
-
스타트 문제집 추천좀여
-
예를들어 꿈이룰개구리 징징이공주 이런애들있잖음? 오르비서버를 듀개만들어서 하나는...
-
댓글이 달려있네
-
수학N제 2
공통 4점 기출은 다 풀 수 있는데 굳이 입문N제를 풀어야 하나요?
와 진짜 칼럼글이네
7ㅐ추 누름
와
이걸로 도형정복하기..
으흐흐
일단 개추부터
저 3번문제 드릴드문제랑 똑같은데
아 살짝다르네
교육청이에요
고2 29
저문제 올리신분 게시글 댓글 ㄱㄱ
브라마굽타 검색해보니 이 사람이 0 발견한 사람이구나
잘읽었어요! 감사합니다 Step3에 AC*sin(beta) 이부분 AC가 아니라 AD아닌가요?
맞네요 감사합니다