미적 질문 (간단하게 정리했음)
g(x)가 아무런 조건도 없는 상황인데
2x+npi 꼴이라 할 수 있나요?
g(0) = npi 가 아닌 상황이면
꼭 g'(0) =2 일 필요는 없는 거 아닌가요??
미적 너무 오랜만이라 헷갈리네요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
담당자 퇴근했으려나 어디에 신고해야될지 감이안옴
-
2025 수능만 인정되나요?? 학교 다니다 보려고하는데 2025만 되는거같지 왜,,
-
수면제 한 알의 여유 14
자고일어나면 명절 끝나있으면 좋겠네
-
국어가 뽑기라는 사실을 6평쯤에 깨닫고 빠르게 유기함 7
최소한만하고 수탐에 몰빵 영어도 깔짝 성공적 ㅎㅎ
-
1시간 째 이모양.. 안 쓰고 있는데..
-
(가) 과조건 아닌가 시픈데
-
경제가 없잖아
-
시대 재종 접수할 때 성적표 이런 형식으로 올렸는데 문제가 되나요?? 성적표 좀 잘리게 올려서,,,
-
스킬에 집착하는 경향이 있음 근데 실력이 늘수록 스킬에 대한 의존도가 떨어지고 결국...
-
하루하루 뿌듯하고 알차게 사는 기쁨? 행복? 이게 너무 좋음을 최근에 느낌..결과도...
-
어쩌다 저리 변해버리신건지.. 진짜로 신시장 개척하려고 떠난건가
-
추천좀 표점먹고싶어용
-
자기 동창 중에서 잘풀린것으로 따지면 다섯손가락 안에 꼽히는거겠죠?
-
안녕하세요! 경북대학교 컴퓨터학부 23학번 재학생입니다~ 먼저, 합격을 진심으로...
-
2주에 한 번씩 실력확인용으로 국수 실모 푸는 거 괜찮나요??
-
물1 생1이랑 물1 생2중에 그래도 전자가 맞나요? 후자해도 괜찮지 않나요
-
내가하던겜들 그래픽이 다른게임이됐어
-
마스터 200점큐 개레전드판
-
수의대 아이패드 3
수의대 갈 것 같은데 아이패드 에어 11이랑 13 중에 어떤게 나을까요? 무조건 큰게 더 좋나요?
-
따뜻한 곳을 좋아한다.
-
연대 신소재 0
예비 몇번까지 돌까용ㅜ...? 연대신소대 연신 추합 예비
-
대학생활 재밌나요? 10
놀러가는 곳은 아니긴한데 그래도.. 궁금함뇨
-
나는 과일을 무척이나 좋아하지만 과일값이 비싼 탓에 먹고 싶어도 먹을 수가 없었다....
-
밍
-
내 카톡은 안보면서 오르비에 실시간 댓글단거 보면 약간 상처받는데 소심한가 나같은 사람 없나요
-
ㅈㄱㄴ 개념은 학원에서 뗐는데 그냥 바로 뉴런이나 이런거 들어도 됨? 쎈 B단계랑...
-
맞 팔 구 6
-
272829는 어떻게든 풀었는데 30은 못풀겠다 현장에서 진짜 어케 풀었지
-
건강한삶
-
더여니 닉은 차지하지 말아주십쇼. 이 닉 못쓰면 재름 안할거에요
-
오티 새터가 정확히 뭐하는건가여
-
같은 이름인 사람꺼 다보임..원래 이래요?
-
맞팔구합니다 5
ㅇㅇ
-
바프찍고싶다 6
전역하면 바로,., 흐흐
-
올해 사탐이 얼마나 표점이 잘 나올지가 아니라 올해 과탐이 얼마나 표점이 안 나올지...
-
진짜 어케모은거임 ..?
-
시대 s반 9
수학 미 98이면 끝자락 가능..?
-
학생 잠수탓네 아
-
장학이면 연락주겠지 뭐
-
군대가기 시러 1
시대도가기싫은데 ...
-
회원에 의해 삭제된 글입니다.
-
정시의벽 파마산 파마늘 레츠고
-
네,
-
시대인재 4
중복 지원 가능한가용?? 대치/목동 인문/자연 우선/선착/성적 이론상 12개 지원...
-
서폿 잘못 만나면 진짜 인생 끝장나
-
200억 있으면 0
실모사서 킬러만 풀고 버릴거임
사실 저도 그 생각햇는데
머지 싶음 지금
오...과외 준비하시는건가요?
양변 미분해보세요
아닌가
맞내요 이거
g'(0)=0이면 g(x)가 왜 상수인지 알려주실수잇으신가요
g'(0)=0인데
그 외에는 미분계수가 0이 아니라면요??
아 헷갈리네..
충분조건이지 필요조건은 아닌거같은데,,,
아니네 맞네,,,씹
아니네 아닌데
원본 문제 보여주실 수 있나요?
오른쪽항이 0부터 2X까지라 N파이인거 아닌가요'
g(0)이 N파이가 아니면 g(x)-g(0)=2x라고 해도 좌변 우변이 같다는 보장이 없어요
사인제곱을 0부터 2X까지 적분한거랑 0.5파이부터 2X까지 적분한게 다르자나요
g가 1차함수라는 보장이 없어서
시작점이 달라도 얼마든지 적분 결과는 같게 만들 수 있긴 해요
위끝 아래끝 기준으로 좌변은 미지수, 우변은 상수가 나오게 두면 g가 2x+C 꼴로 나와야 함이 보이고, 우변의 한쪽 끝이 0으로 고정이니까 좌변도 f의 절편이 경계여야 함 즉 +n*pi
인 것 같네요
오류 맞는 것 같네요
함수 h(x)=1/2(x-sinx*cosx)에 대해 h'(x)=sin^2(x)니까
h(g(x))-h(g(0)) = h(2x)-h(0)이 성립하고, 이때 h(x)는 일대일대응이니 역함수가 존재해서 임의의 g(0)에 대해 g(x)=h-1(h(2x)+h(g(0)))과 같이 g(x)를 정의할 수 있어요
물론 g(0)=npi가 아니면 g'(0)=0이고요
사진은 g(0)=pi/2인 케이스에서 g(x)의 그래프에요
생각해보니 원본 문제에서는 g'(x)가 나타나는데, 이런 식으로 정의되면 특정 점에서 약간 x^1/3 그래프랑 비슷한 형식으로 미분계수가 발산하는 문제가 있긴 하네요
그렇다고 미분가능이라 명시된 건 아니라서, 여러모로 애매하긴 해요
검토가 안된 문제같네여...
선생님 답변 정말 감사합니다 ㅠㅠ
뭔가 이상한건 느꼈는데
현우진 쌤 교재라서 해설이 무조건 맞을 줄 알았네요
감사합니다!
잘 읽었습니다.
의문이 드는 것은
제가 애초에 질문한 이유가 g(0)=0이 아닐 경우에도 성립하는지 궁금해서 였는데,
선생님의 증명에서는
f(g(x))=0 이면 f(2x)=0 인것을 이용하셨네요.
물론 맞는 말이긴 하지만,
g’(x)=0이어도 f(2x)=0이 됩니다.
그렇다면 f(g(x))=0과 f(2x)=0은 필요충분조건이 될 수 없지 않나요?
g'(x)f(g(x))=2f(2x)이므로, f(g(x))=0이면 f(2x)=0이지만, f(2x)=0이면, f(g(x))=0일 수도 있고, g'(x)=0일 수도 있기에, 필자는 f(g(x))=0의 해와 f(2x)=0의 해가 일치한다는 걸 증명함. f(g(x))=0→f(2x)=0과 f(2x)=0→f(g(x))=0을 각각 증명해 f(g(x))=0⇔f(2x)=0을 도출한 게 아니라, f(g(x))=0→f(2x)=0와 추가적인 증명을 이용해 f(g(x))=0의 해와 f(2x)=0의 해를 구했고, 두 해가 일치했기에 f(g(x))=0⇔f(2x)=0이 도출된 거임