허곡신거 [902596] · MS 2019 (수정됨) · 쪽지

2025-01-11 17:14:18
조회수 425

우주

게시글 주소: https://rocket.orbi.kr/00071233803

https://virtualmath1.stanford.edu/~conrad/diffgeomPage/handouts/trivline.pdf


Brian Conrad라는 앤드류 와일즈 제자인데다가 현우진 쌤 학부 지도교수인 정수론 쪽 수학자인데, 예전에 학부 미분기하 수업을 한번 진행했을 때 올린 수업 자료. 제목은 "Why the universe cannot be S^4" 라는 상당히 어그로성이 짙은 제목의 문서인데, 기본 세팅은 spacetime (smooth Lorentzian 4-manifold, 다시 말해서 signature 가 (3,1)인 pseudo-Riemannian manifold) 이고, 블랙홀 같은 singularity는 없다고 가정한 상태. 대수하는 사람 답게 분명 미분기하지만 아주 미분기하 스럽지는 않고 (예를 들어 curvature나 connection form같은게 등장하지 않음) 오히려 (선형)대수적인 면모를 부각해서 써놓음.


설명은 파일의 첫 페이지 Corollary 1.2 이후에 써있음. S^4는 simply connected이고 S^4는 non-vanishing vector field를 갖지 못하기 때문에 (Hairy ball theorem) S^4는 Lorentizian manifold가 될 수 없다 (Corollary 1.2) 이렇게 설명.


Corollary 1.2는 Theorem 1.1에 의해서 나온다고 써있는데, Theorem 1.1은 그 자체로 흥미롭고 직관적인 정리이기 때문에 따로 적어봄.


Theorem 1.1. Let $E\to M$ be a smooth vector bundle over a manifold $M$. If $E$ admits a pseudo-Riemannian metric $g$ with signature $(n_{+},n_{-})$, then there exist smooth subbundles $E^+,E^-\subset E$ with ranks $n_{+}$ and $n_{-}$ respectively such that $g$ has positive-definite on $E^+$ and negative-definite on $E^-$. In particular, the natural bundle map $E^+\oplus E^-\to E$ is an isomorphism.


원래 증명 안 보려고 했는데, 증명에서 Grassmannian을 써서 보게 됨. 정확히는, Theorem 1.1은 fiber에서는 자명하기 때문에, 테크니컬한 부분은 fiber들에서 decompose가 된 것들이 잘 짜맞춰져서 smooth subbundle들로 쪼개진다는 것을 보이는 부분임. 이 과정에서는 보통의 경우에는 smooth frame을 잡고서 M위에서 point들을 움직였을 때, local expression들이 smooth 하게 vary하기 때문에 smooth 하다고 하는데, 여기서는 Grassmannian을 이용해서 증명함. 나만 처음본 것일 수도 있는데, 이렇게 증명하는 것은 또 처음봄. 이것에 대해서는 사실 Conrad가 맨 처음 문단에 써놨는데, "pseudo-Riemannian manifold이기 때문에 기존의 Riemannian 에서 하던 직관적인 작업들이 잘 되지 않을 수 있다" 이렇게 설명함. (이래서 pseudo-Riemannian manifold가 어려움)


기본 아이디어는, 앞서 말한 대로, 각 fiber마다의 decomposition을 한 다음에, quotient를 해서 positive definite한 파트만 살려놓으면, $G_{n_+}(\Bbb R)$ 에 한 점이 대응됨. 따라서 $M\to G_{n_+}(\Bbb R)$로 가는 set map을 만들 수 있는데, 문제는 이것이 smooth 한지 체크하는 것. 이걸 어떻게 보였는지 궁금하면 노트를 한번 보길. (아무도 안보겠지만!)

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.

허곡신거 [902596]

쪽지 보내기


  • 첫번째 댓글의 주인공이 되어보세요.