우주
https://virtualmath1.stanford.edu/~conrad/diffgeomPage/handouts/trivline.pdf
Brian Conrad라는 앤드류 와일즈 제자인데다가 현우진 쌤 학부 지도교수인 정수론 쪽 수학자인데, 예전에 학부 미분기하 수업을 한번 진행했을 때 올린 수업 자료. 제목은 "Why the universe cannot be S^4" 라는 상당히 어그로성이 짙은 제목의 문서인데, 기본 세팅은 spacetime (smooth Lorentzian 4-manifold, 다시 말해서 signature 가 (3,1)인 pseudo-Riemannian manifold) 이고, 블랙홀 같은 singularity는 없다고 가정한 상태. 대수하는 사람 답게 분명 미분기하지만 아주 미분기하 스럽지는 않고 (예를 들어 curvature나 connection form같은게 등장하지 않음) 오히려 (선형)대수적인 면모를 부각해서 써놓음.
설명은 파일의 첫 페이지 Corollary 1.2 이후에 써있음. S^4는 simply connected이고 S^4는 non-vanishing vector field를 갖지 못하기 때문에 (Hairy ball theorem) S^4는 Lorentizian manifold가 될 수 없다 (Corollary 1.2) 이렇게 설명.
Corollary 1.2는 Theorem 1.1에 의해서 나온다고 써있는데, Theorem 1.1은 그 자체로 흥미롭고 직관적인 정리이기 때문에 따로 적어봄.
Theorem 1.1. Let $E\to M$ be a smooth vector bundle over a manifold $M$. If $E$ admits a pseudo-Riemannian metric $g$ with signature $(n_{+},n_{-})$, then there exist smooth subbundles $E^+,E^-\subset E$ with ranks $n_{+}$ and $n_{-}$ respectively such that $g$ has positive-definite on $E^+$ and negative-definite on $E^-$. In particular, the natural bundle map $E^+\oplus E^-\to E$ is an isomorphism.
원래 증명 안 보려고 했는데, 증명에서 Grassmannian을 써서 보게 됨. 정확히는, Theorem 1.1은 fiber에서는 자명하기 때문에, 테크니컬한 부분은 fiber들에서 decompose가 된 것들이 잘 짜맞춰져서 smooth subbundle들로 쪼개진다는 것을 보이는 부분임. 이 과정에서는 보통의 경우에는 smooth frame을 잡고서 M위에서 point들을 움직였을 때, local expression들이 smooth 하게 vary하기 때문에 smooth 하다고 하는데, 여기서는 Grassmannian을 이용해서 증명함. 나만 처음본 것일 수도 있는데, 이렇게 증명하는 것은 또 처음봄. 이것에 대해서는 사실 Conrad가 맨 처음 문단에 써놨는데, "pseudo-Riemannian manifold이기 때문에 기존의 Riemannian 에서 하던 직관적인 작업들이 잘 되지 않을 수 있다" 이렇게 설명함. (이래서 pseudo-Riemannian manifold가 어려움)
기본 아이디어는, 앞서 말한 대로, 각 fiber마다의 decomposition을 한 다음에, quotient를 해서 positive definite한 파트만 살려놓으면, $G_{n_+}(\Bbb R)$ 에 한 점이 대응됨. 따라서 $M\to G_{n_+}(\Bbb R)$로 가는 set map을 만들 수 있는데, 문제는 이것이 smooth 한지 체크하는 것. 이걸 어떻게 보였는지 궁금하면 노트를 한번 보길. (아무도 안보겠지만!)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하하
-
골목안 배꼽을 주제로한 변주곡 사막을 건너는법 매우 잘생긴 우산 자전거도둑
-
최저는 맞출 수 있을거같은데 학추가 서류20을 보더라구요 생기부를 서어서문으로 써서...
-
걍 다 ㄴㅈ임 0
칫
-
나는 숫자 세는거 밖에 못함. 1,2,3,..
-
이거 ㄹㅇ 잼밋음
-
덕코 탕진.. 6
흠
-
아 왤케 어색하지
-
그림 안 그리면 못 풀겠음
-
. 2
.
-
이렇게 네임드 많이 배출한 과가 있나?
-
연속함수가 아니라 그런건가?
-
수강신청 며칠전에 오티하는거 갔다와서 후딱 짜면 안됨?
-
올해 원서구조가 얼마나 기형적이냐면 원래 가군 연고 나군 서성이 극정배인데 연대에...
-
세계에서 가장 ~~한 ~~
-
아니다 밥 먹고 와서 해야지
-
옯스타 홍보 하겟습니다 11
뇨뇨쿄 뭐시기 입니다
-
표점차 보정의 공정과 그것이 입시 결과에 반영되는 것은 다름 4
말 그대로 내년 확통이 기탄수학으로 나오고 미적은 레전드 문제를 갱신해 20점차...
-
전 재수생임미다 3
N수생 이기기 힘드니까 제가 재수생인척 하겟습니다 작년 수능 망하고 이번 수능 드갑니다
-
1.고집 쎈 여자 2.술 좋아하는 여자 어디가 더 비호감 많나요?
-
10명 뽑는데 40명정도 지원했음 점공을 20명밖에 안했는데 이거 어케보심 극안정은...
-
쌍지 25교재 0
작년거랑 바뀐 내용 알 수 있나요?
-
그래도 글은 하나 써야할것 같다는 생각이 들어서 씁니다. 일정 일시는 제가 정리를...
-
굳이 풀어야하나
-
국정원장
-
고양감 4
야옹~
-
NYA ONG
-
32프로 할인하길래 벤틀리 충동구매로 뽑았다 사실 모형이다 사실 모형조차 살 돈이 없다
-
프사 1
추천좀 좀 바꾸게
-
인강 풀커리 타려는데, 추가적으로 풀어야 할 문제집 있을까요? 2
국어: 강민철 독서 + 강민철 문학 + 전형태 언매 수학(미적분): 현우진 영어:...
-
잘자용 3
오야스미
-
다들 어떠셨나요?
-
하루종일 안 들어오니까 많이 줄었어요 그렇가고 어디 놀러간것도 아님 집에만 있었음....
-
후배랑 친해지고 싶어..
-
저한테 차단당하신분중에 해보실분?
-
차의과 약대 1
95.8이면 붙나요? 점공 상황 좀 알려주실분
-
님들 내가 1
다른사람들은 아무렇지 않아하는데 나만 지랄하고 그런 느낌있음?
-
1. 6년제인 점 + 가서 4년 더 해야되는 점 감안해도 가는 게 낫나요? 2....
-
뭐먹
-
밥을 먹어볼가 2
바이바
-
채플 사참 다 합쳐서 19.5가 말이 되나 최소한 24까진 보장해달라고 하필 숫자도...
-
밥먹고 와서 헹굼 한 번 더 하고 널어도 되겠지?
-
"공통점이다" 라는 공통점을 찾을수도 있음. 이말은 곧 다른 공통점을 찾는것임...
-
울지마바보야 7
넌정말괜찮아
-
ㅋㅋ vs 작년 문과입시
-
반수할거면 10
지금부터 공부하는게 낫나 근데 안하는게 더 불안함 쫌쫌따리 해야겟슴
-
복전한다해도 0
1학년부터 복전할 전공수업을 듣진않죠?
첫번째 댓글의 주인공이 되어보세요.