[수학칼럼] 정보의 용도 파악
수학은 현장감이 의외로 큰 과목입니다
그렇기에 저는 어떠한 상황에서도 당황하지 않고 문제를 풀수 있기위한
원칙이 존재해야 한다고 생각하고 그것이
어떤 상황에 있든 정보의 용도를 가장먼저
파악하는 것입니다
일단 240613으로 적용해보도록 하죠
먼저 문제에서 주어진 정보를 정리하도록 하죠
1.BC와 CD길이
2.각BCD의 코사인 값
3.원지름의 비율
4.P1P2와 Q1Q2의 길이의 비
5.삼각형 ABD의 넓이
이제 문제를 풀기전에 먼저 계획을 해야 합니다
이는 문제에 대한 대강 틀을 잡는 걸로
각 정보들이 어떤식으로 사용될지를 예측하는 겁니다
1) 1번과 2번 정보는 변 BD에 대한 정보를 알려줍니다
2) 원에 내접하는 삼각형이라는 부분에서 3번과 4번은
각 BAD에 대한 정보를 도출해줍니다
3) 각 BAD에 대한 정보가 있다면 삼각형의 넓이(5번)를 알기에 사인 넓이 공식으로 AB와 AD에 대한 식 하나를 먼저 세울수 있을 것입니다
4) 변BD, 각BAD를 알기에 BD, AB, AD에 대한 코사인 법칙으로AB, AD에 대한 식을 추가로 세울수 있습니다
우리가 알고자 하는것은 AB,AD 식 개수는 2개
식개수=미지수 개수 이기에 1) - 4) 까지의 계산만
해주시면 되기에 나머지는 그냥 계산만 해주시면 됩니다
251127입니다
이 발문에서 정보는 총 3가지가 있습니다
1.접선이 x축인것으로 g(×)에 대한 정보 2가지
2.역함수를 지니는 점에서 정보 1가지
이 정보들의 용도는 명확합니다
오직 f(x)를 확정시키는 용도입니다
f(x)의 최고차항에 대한 정보를 주었기에
f(x)에 남은 미지수는 3가지
식개수=미지수개수
나머지는 계산만 하면 됩니다
250629입니다
구해야 하는 미지수는 3개
a,b,c
하지만 바로 보이는 정보는 없습니다
정보가 보이지않다면 찾아내야죠
g(x)가 실수전체에서 미분가능하답니다
일단 f(x)를 미분해보죠
미분하니 증가함수, 0과 1에서만 변곡점을 지닙니다
근데 g(x)는 x<b일 때 -f(x-c)가 됩니다
미분가능성을 생각해보죠
미분가능: 도함수연속, 원함수연속
원함수가 연속가능하다는 정보는 a값 특정이 목적입니다
b값과 c값은 도함수 연속조건을 통해 특정해야합니다
우리는 f(x)가 항상 증가, 변곡점은 0과1이라는
정보를 알고 있습니다
f(x)가 항상증가 한다는 정보는
f'(x)=-f'(x-c)를 만족하는 f'(x)값이 0임을 알려줍니다
이를 알아내면 b=c=1는 쉽게 나옵니다
이후 원함수 연속조건으로 a값만 계산하시면 됩니다
이렇듯 모든 문제에서 정보는
확실한 목적을 지니고 있습니다
또한 세번째 문제처럼 그것이 직접적으로 제시된것이
아닐수도 있습니다
하지만 만약 정보를 알게된다면
그정보의 목적이 무엇인지 부터 알아내야 합니다
그이후는 확신을 가지고 계산을 하면 됩니다
이상입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
설사범 점공 3
제 앞에 두명빼고 전부 미인증이던데 정시면접이라 혹시 허수 가능성이 있을까요?
-
네 관리자님?
-
보통 정말 큰 펑크는 거의 다 사회과학 라인에서 발생했는데 왜 사회과학 라인에서...
-
다군 상위권 대학 충원율 대략 어느 정도 예상하시나요? 0
올해 정시 정원과 경쟁율인데요....(수시이월은 된 것도 있고, 안된 것도...
-
내신 버리고 정시간다 기하가 쉽다 vs 미적이 쉽다로 토론하고 있는데 좀 웃기네요
-
연대는 합격하면 집에 뭐 오나요
-
안녕하세요 올해 고3으로 진학하는 학생입니다! 그간 모고를 준비하고 본 적은 없어서...
-
걍 듣고 싶은 사람 들어두 될 정도로 큰 차이 없나요?? 문학은 강민철 들을거에요 !!
-
솔직히 가망없는거 아는데 포기가 쉽지않음...
-
하... 리스크가 큰데 굳이 험한 길을 가야 할까? 그래도 치고싶다...
-
부산대 합격생을 위한 노크선배 꿀팁 [부산대 25학번] 0
대학커뮤니티 노크에서 선발한 부산대 선배가 오르비에 있는 예비 부산대학생, 부산대...
-
22학년도 핵빵 : 가톨릭대(한양공) 빵 : 중앙대, 서울대, 아주대, 연세대 약대...
-
이정도면 들어올 사람 다 들어온것이 아닐까 라고 합리화중
-
영어 시범과외인데 일단 25수능에서 몇문제 가져가려고 해요 유형별로 가져가서 어디가...
-
점공 계산기 이거 10
서성한 라인 밑이면 나오는 예비보다 더 앞번호 일 수 있다는 말인거죠? 희망회로 on
-
[칼럼] 비문학과 탐구 영역_자료 해석/퍼즐형에 관한 10
안녕하세요. 퍼런입니다. 지문 분석은 자료 제작할 때 많이 하니.. 오르비에 쓰는...
-
날수도 있죠?... 근데 그렁 가능성이 낮겠죠? ㅋㅋㅋ 펑크는 대부분 한번이상...
-
갑자기 오르비에 옮붕이 인생역전떴냐???? 란 제목으로 글 올라와서 고심리...
-
호수공원이나 오산도 괜차나요..
-
점공 146등인데 다군+23수능과 비슷한 등급컷이니까 추합 많이 돌겠죠????? (제발 돌아줘)
-
반갑다 핸드폰아 노트북만 쓰니까 너무 불편했다
-
별빛이 흐르는 2
다리를 건너
-
차이가 뭔가요 ?? 수분감이 마더텅보다 문항수가 적은 게 끝인가용 ..+ 혹시...
-
건강안좋아질것같음. 괜히 기대하게하고.. 바뀌는 게 없을 테니 안볼게요
-
등수 뒤로 밀려나는건 뭐지??
-
개추 눌러주시고 댓 다시면 1명 추첨해서 5만덕 드리겠읍니다 내일 12시 1분까지
-
여행 가야하는데 3
돈이 없음… 현금20 주식계좌80 비율로 들고있는데 주식에서 빼기에는 더 오를듯해서 아깝다
-
07이나 08있나..그냥 궁금 중딩은 가끔봤어도 초딩은 그 정법만점친구말고는 못본듯??
-
^l발 내 최초합 돌려내요
-
히히
-
낙지 2칸이었고 보통 10명 초반대 추합도는데 올해는 사탐가산 생겨서 모르겠네요 ㅠㅠ
-
닉변 추천해주세요 16
-
ㄹㅇ있어요? 인서울 대학 다 있나요??
-
ㅈㄱㄴ
-
내 위로 다 ㄲㅈ라 진짜
-
현역 : 중학교때까지 공부 곧잘 하다가 고1~고2때 아예 X(국어 사탐만 시험...
-
최초합 점수대 궁금한데.. 성균관대 성대 교육학과
-
옯반꿀의 좋은 예시가 될수 있을까요
-
축하보다는 욕먹겠네
-
형 집왔다. 11
역시 집이 젤 조아
-
고대는 들어라 6
서연>>>>>>>>>고가 되고 싶지 않다면 당장 빵꾸 매꾸도록
-
죽고싶어짐…
-
저녁뭐묵지 6
흠냐뇨잇
-
점공 안한 애들 중에 고득점자 5명정돈 있겠지ㅋㅋㅠㅠ
-
‼️중앙대학교 경제학부 25학번 새내기를 찾습니다‼️ 0
‼️중앙대학교 경제학부 25학번 새내기를 찾습니다‼️ 안녕하세요, 의혈중앙 민주경제...
-
‘불안’ 0
제 위에 계신분들 제발 스나성공하시길 제발연고대붙어주시길 제발
-
+ 과1사1 할까여 사2 할까요 사문은 무조건 할 생각입니다 목표는 수능대박치면...
-
"中 병원서 환자들이…" 팬데믹 공포에 전문가들 "과민반응" 2
북반구에 계절성 호흡기 질환이 유행하는 가운데 중국에서 사람...
닉네임부터 바꾸셈
선ㄱㅐ추ㅋㅋ
당신뭐야
흠 만족스렂군
너누구야
계정 해킹당함?
님?
맞말
경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이!
ㅏ랑햐요
그건 좀...
존나멋있다ㄹㅇ
그냥 고능부엉이가 맞다
대고능부엉
고능아네 ㄱㅁ
와 고트부엉이
고능부엉이 ㄹㅈㄷㄱㅁㅊㄷ
간단하지만 정말 알찬 칼럼이네요. 따봉
와 뭐고 이게
일단 스크랩