수학 황 질문
근의 차이가 2일때만 가능하다고 하는데 근의 차가 2일때 제가 그린 그림의 경우에는 3개 아닌가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
앞과 뒤가 다른 사람은 정말 비겁하다고 생각합니다. 커뮤니티에 이런 뻘글 작성하는...
-
침대셀카ㅇㅈ 8
-
수능이 끝나서 그런가
-
기다려주세요
-
또 잠 안 오네 3
누워있으면 심장 뛰는게 너무 잘 들려 졸려서 눕자마자 귀신같이 모든 감각이 예민해지는
-
기침하는소리임뇨
-
백분위 몇이 정배임?
-
원서철 되니까 5
갑자기 어떤 학문이든 다 배울 수 있을 것 같음 ㄹㅇ ㅋㅋ
-
쓰니 몸이 몇개야?
-
탐구 때 되면 머리가 안돌아감 체력이슈로 내려놓음 탐잘하는 분들 진짜 대단함.....
-
믿고 ㅇㅈ 20
화장은 사람을 살립니다
-
물론 반수로
-
평가원 #~#
-
수학 과외이무니다 저에게 마구마구 가르쳐주세요♡♡♡♡♡
-
뻥임뇨
-
궁금합니다
-
병원 와파 문제인지 테스트
-
이렇게된이상전재산긁어모아서 도파민충족위해레버리지와함께 코인숏을처야겠음
-
ㅜㅜ
-
잠이 안온다 1
오르비를 좀더 조이고즐겨야겟다
-
요즘 애들은 의지가 없어
-
아
-
조교다붙고 8
과외 잘돼서 시급6찍고 그 시드머니로 주식대박나서 1억찍고 군대 가는 상상함
-
예나 2
잘자..
-
ㅇㅈ 4
ㅇㅇ..
-
약간 공부 잘하고 머리 좋은 거 좋아하는 여자애들 간혹 있는데 그런 애들 말고는...
-
저 지금이라도 연애 포기해야 할지도 몰름
-
못생기고키작은것도억울한데 2년동안시대다니고별난리쳐도되도 탐구3/3뜰정도의저능아고...
-
연더우드 쓸것같은데 원서쓰고 나서부터 한달정도 준비하면 충분한가여?
-
삼수 하는 동안에는 와 씨 뒤질것같다 내가 다신 이 짓 안한다 했는데 진짜 불과 한...
-
벌써 자기에는 아쉽잖아 12
이 고요함과 침묵을 더 즐기자
-
시발 생명할껄 0
개잘생겻네
-
수면실시. 1
-
쥰내 어렵네
-
대학 들어가기전에 수시러들끼리 단톡파는거 진짠가요?? 6
정시의 길은 외롭구나,,,,
-
ㅇㅈ 5
.
-
언제쯤일까 어떻게살고있을까 아득히 멀지만..
-
잠뇨 12
ㅂㅂ
-
95 97 4 96 96 언 미 영 생 지 영어 좆박아서 성대는 안되고 서,한...
-
인증해보고싶은데 12
아는 사람 있을까봐 못하것음
-
수많은 오르비언들과 결혼하기 으흐흐
-
어케됨? 그래도 덕코 보냈다고 뜨나?
-
호감가는 이성 대하는법 17
멀리서 지켜보기만 하고 사라진다.
-
나는 외모는 별 문제 아니라하는 사람이 제일 싫음 16
아이큐70인사람한테가서 너의지능은별문제가되지않는다 라고말하는거랑다를게없다고생각함
-
과외 학생땜에 경북대 수시 찾아보다 5등급이 평균으로 붙었길래 입결 신기해서 글...
-
냥인칼가서 컴공해야하나
-
이상형 4
평소에 까칠한데 나한테만 강아지인 여자
-
기차지나간당 7
부지런행
-
나이 많은 사람에게 먼저 말 놓을게라고 하는 사람 있었는데 딴 건 괜찮았는데 별로 정이 안 가더라
-
주량 적고가요 5
저는 소주 3.5~5병
오…이런 생각은 안해봤는데
저런 상황에서도 t가 a+로 갈때 g(t)는 1입니다
그게 궁금한거였는데 왜인가요?
'감각적직관'
?
극한에서의 위와 동일한 개념을 묻는 기출: 231114, 230430(미적)
2개 해설강의 참고 ㄱㄱ
x가 a보다 크면서 a에 한없이 가까워지면 a과 저 근 사이로 x값이 올 수 있잖아요
아 그러니깐 a값이 아무리 근과 가깝다 해도 그 작은 사이에 값이 존재해서 결국은 우극한이 근이 되지 못해서 2개가 아닌 1개라는 건가요?
네네 그렇게 이해하시면 됩니다
이해 한번에 되었어요
아 근데 혹시 a를 근의 좌극한값이라고 설정하면 그때 a의 우극한 값은 근 아닌가요?
근의 좌극한값으로 설정한다는 것이 정확이 무슨 말인 지 모르겠네요.
써주신 말을 그대로 보면 좌극한'값'은 상수이므로 그걸 구해서 넣어버리면 되는 것이고,
사진의 상황을 생각하신 것이라면 a의 값에 따른 g(t)의 값을 새로운 함수 h(a)로 구한 후 h(a)의 근에서의 좌극한을 구하면 됩니다.
제가 조금 헷갈리게 적었던것 같은데, f프라임 (x)의 두 근 중, 작은 근의 좌극한값이 존재할 것인데, 그 값을 a로 설정하게 된다면 , a의 우극한 값이 결국엔 (역함수같은 관계로….?) 근이 되기 때문에, g(a+) 범위가 [근, 근+2]가 되므로, f프라임(x)는 근의 거리가 2인 함수이므로 결국에는 g(a+)는 2개, g(a-)는 1개가 나와서 총 3개가 되는게 아닌지 의문이네요
질문이 계속 길어져서 죄송합니다 ㅜ
a의 우극한이 근이 되도록 하는 a의 값은 존재하지 않습니다
극한 개념을 다시 잘 생각해보세요
앗 그런가요 감사합니다
a+면 작은 근이 빠지고 a-면 큰 근이 빠지잖음
아니면 그냥
g(t)= 0(t<!)
1(!=<t<@)
이런식으로 g를 직접 쓰고 극한 구해보기