2025 킬링캠프 시즌2 4회 리뷰
2025 킬링캠프 시즌2 4회 리뷰
핑계긴한데...ㅎ 몸 컨디션이 좀 안 좋을 때 풀어서 실수를 너무 많이 했다
개별 문제들 위주로 리뷰를 해야겠다
10번 : 늘 말하지만 수열은 결국 함수다
12번 : 얘 때문에 몇분을 쓴지 모르겠다. 마지막에 뭘 구하란건지 발문이 이해가 안돼서 다 구해놓고 잘못 푼줄 알았다.....왜냐면 나는 p의 최솟값과 q의 최댓값으로 발문이 바뀌어야한다고 생각해서 내가 뭔가 틀렸나...했다. 사실 아직도 조금 헷갈리는데, 어쨌든 정리해보면 a에 따라서 f(3)은 결정이 된다. 그 가능한 범위가 마지막에 구해진 범위에 속하는 모든 값들이 가능한 것이다. 따라서 p부터 q가 내가 구한 범위보다 더 큰 것을 괜찮지만 더 작은 것은 가능한 경우의 수를 포함하지 않게 되므로 p부터 q까지의 범위가 가능한 f(3)범위보다 크거나 같아야한다!
14번 : 좀 귀찮지만 수형도 잘 그리면서 쭉쭉 뻗어가면 못할 건 없다
15번 : g(0) 조건으로 개형은 대강 나온다. 그래서 g(1) 이용해서 b가 2,3,4일 때 한 번씩 해보면 a가 결정이 된다. 음수근을 뭐 –m이런식으로 두고 하면 편하다. g(2)만 잘구한다.
20번 : 그림을 디테일하게 그려야한다. 귀찮지만 어쩔 수 없다.
21번 : 어려운 편이다. 각 표시 좀 깔쌈하게 하고, 연장해서 삼각형 완성하면 뭐가 좀 보인다. 기본적으로 사인법칙 늘 의식해서 쓰고, 베타 빼기 알파라는 각을 수1 과정에서 어떻게 쓸까 이런 필연적인 고민을 하다보면 길이 보인다. 특히 연장 삼각형이 킥이다.
22번 : 경우의 수가 좀 많은 문제인데, 바로 안 보이면 한 발 물러서서 엄밀하게 적어보자. 가 나 조건 모두가 중요하다. 서로 다른 두 근이라고 한다. 나 조건을 보니, g절댓값은 일단 연속함수는 확정이고, 첨점도 1에서만 가능하다. 그렇다면 첨점은 언제 생길 수 있을까를 생각해보는게 필연적 흐름이다. 가능한 후보는 a에서 정의하는 함수가 바뀌는 순간, 혹은 근 2개의 순간 각각에서 첨점이 가능하다. 가장 만만한 a에서 첨점이고 근 두 개는 다 중근인 경우를 보면 불가능한 걸 알 수 있다. 왼쪽에서 첨점을 그리면 평행이동해서 여전히 그것이 근이게 만들 수가 없다. 따라서 a에서는 절댓값 씌워서 미가가 됐고, 근 둘 중 하나는 중근이고 나머지 하나는 뚫는 근이라는 것이 확정이다. 그렇다면 a에서 절댓값 전부터 원래 미가일 수가 있나 싶은데 그건 바로 안되는게 보인다. 그러면 서로 함숫값이 ±라는 거고, 미계도 ±라는 거다. 따라서 혹시 이건가 하고 슥 그려보면 답의 경우가 보인다. 나머진 계산~ 계산할 때도 얼만큼 평행이동했는지 잘 이용하면 식도 그리 더럽지 않다.
27번 : 그냥 라이프니치긴한데 요새 난이도 생각하면 29에 나왔어도 괜찮긴하다.
28번 : 28번에 쉬운 문항이 온 것도 오랜만이다. 그냥 그림 잘 그리면 된다.
29번 : 보통은 n-1넣어서 빼주는데 얘는 m+1넣어서 빼줘서 범위도 신경 쓸 필요가 없다. 나 조건으로 플마만 신경쓰면 돼서 어렵진 않다.
30번 : 얘도 어려운 문제가 절대 아닌데 계산을 완전 잘못해서 계속 답이 안 나왔던....컨디션 이슈라고 합리화하자....적분계산 자체는 어려울게 없는게 대부분은 기함수라서 0으로 상쇄되거나 그냥 사인함수라서 이미 넓이를 알고 있다. 그래프만 똑바로 그리면 어려울게 하나도 없다. 31/8이란 숫자도 대놓고 4보다 작다고 알려주는 그런 숫자라서 그래프 개형 찾기도 어렵지 않다.
일단 나는 100점이 아니라서 다소 부끄러운데....실수고....다 아는 문제였으니 호머식으로 넘어가기로 했다~
리뷰에 적은 문항들은 전부 다 오답하고 다 알아갔으면 좋겠다. 22번이 극찬받을 문제는 아니어도 22번을 못 푼 사람이 22번을 결국 스스로 뚫어낸다면 실력이 크게 오를 거 같다. 21번도 도형으 필연적 풀이를 잘 느끼면 좋겠다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
테슬라 뭐임 2
ㅅㅂㅋㅋㅋ
-
컴퓨터사서 몬헌 와일즈 해야지
-
ㅇㅈ 8
아주 예쁜 민지
-
그래야 더 존중할 수 있다. -Cho.
-
가즈아
-
그래도 수능 만점 인터뷰는 못하겠지만…
-
뭐?브레턴우즈교수가실종됏다고?논리학이아니고경제라 고? 6
아 제발 이거 진짜예여????경제제발아제발
-
ㅇㅈ 9
-
수면 패턴 0
기숙사 학굔데 수능 전 수면 패턴 맞추라고 월화수 10시에 재운다는데 평소에 많이...
-
전 게입니다 6
전 게입니다
-
중학교 선생님이 알타이어족이 정설이란 얘기를 펼치셨다 7
그 얘기에 빠졌다가 결국 아닌 걸 깨닫고 반박하려고 고대국어에 관심을 갖게 됐죠...
-
순서 유형 접근법 1) 지문의 구조로 접근이 가능한 경우 평가원은 대부분 글에...
-
다만 지금은 누워있다오
-
작년 강대k 국어도 풀만한가요?? 내년 수능 준비라 연계는 상관없어서..
-
저녁먹고 할게 딱히없는데 기출은 하루 1시간 정도 꾸준히 봄요
-
맞팔하실분 10
제발.. 원래 기하경제하면 안해주는건가요
-
22211로 쟁취하겠습니다…
-
매일 연락? 지인과 친구를 가르는 기준이 뭘까요
-
외모등급이 9에서 8등급으로 오른듯한 느낌 어린이때의 깐달걀피부로 회귀중
-
전 1명이라고요…
-
1. 얼굴인증 2. 당연히 나같이 양심없는 정시파이터인줄알았는데 사실 수시러일 때...
-
너무 좋음 김동욱 수국김만 완강때리고 수업듣는 태도라던지 글 읽는 법 개선한 다음...
-
길이가 m인 끈에 매단 추를 오른쪽으로 각 theta의 크기만큼 당겼다가 가만히...
-
https://youtube.com/shorts/dNmxHf1ivug?si=O98ou...
-
'아'
-
안 보자니 그래도 구멍이 생기는데 보고 나면 정작 각주로 달아주는 단어도 너무 많음
-
기하러 인증 17
여기근데 소수과목하면 원래 따시키나요 아무도 댓글 안달아줘서 서러운데
-
알타이어족은 BS다
-
그 메타 금지야 16
진짜자야됨
-
수1 나오면 좀 토할 거같아서 ㅋㅋ 오늘 수2 22 두 개 다 맞았는데 수1 수열...
-
그 때 국어 풀면서 진짜 울고 싶었는데
-
와 나 20레벨됐어 16
-
님대체멀보러온건지
-
제발
-
인증사진이 173 58키로즈그즈음인데 지금 174 74임 이거도 뺀거 개봊같다
-
텍스트는 잘 읽는데 수학 개념은 눈에 잘 안 들어오네요 통계 & 수학과 복수전공하신...
-
수험생아닌거맞죠?
-
ㅇㅈ 9
자라 얘들아
-
뭔 ㅇㅈ이냐 5
수능끝나고 하면 훨 재밋ㄱ음 ㅇㅇ
-
기출?? 아니면 계속 사설만 풀까요? 기출은 답이 다 기억나서
-
그때면 삼도극 무등비 ㄱㄴㄷ시절인데 많이 어려웠나요?
-
비가 와야지 샴푸 들고 밖으로 나가는데;;
-
영어 실모 점수 0
왜 이명학 실모보다 다른실모 점수가 더 낮게 나오지
-
이제 나는 자야지 쿄쿄쿄
-
개인적으로 좋아하는 실몬데 후기가 별로 없어서 제가 스타트 끊을게용 미적분 22틀...
-
귀류법이어쩌고 이게 답이면 저거도 답이니까 이건 답이될수없으니 어쩌고
-
여붕이 0
저기서 20키로찜 레전드레전드레전드 ㅋㅋ
-
김범준 현우진 0
안녕하세요 지금 고2이고 수1은 뉴런 수분감 다 끝낸 상태이고 수2는 수분감 끝내고...
이사람도100점아닌거보니걸러야겠구나
감사합니다 5회부터 풀게요
아 진짜 컨디션때문임요;; 다른 100점으로 다시 돌아오겠습니다...