회원에 의해 삭제된 글입니다.
회원에 의해 삭제된 글입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
정오표보니 문항오류로 삭제인데 만약 푼다면 이런식으로 풀리는거 맞나요??? 그래도...
함수 두개가 안겹치면 파란것도 하나 이상은 존재할거같은
찍관으로 ㅇㅇ
검정색도 존재 안 할 지도 모르나 모지
이차함수 도함수의 치역이 모든 실수라서 항상 존재하지 않나여?
p,q를 움직이다 보면 평변=미계인 p,q가 존재한다는 뜻인가요?
근데 f'(x)=g'(x)는 하나의 실근밖에 없으니까
두개는 존재 못하지 않나요
잘못생각했나 흠
아 이건가
해당하는점이다릅니다..
f'(x)=g'(x)의 근은 1개가 맞지만 이 방정식에서의 근은(x=a 라고 할 때) f(x)와 g(x) 각각의 x=a에서의 접선이 평행하다 라는 의미입니다.물론 f(a)=g(a)도 만족한다면 두 직선이 일치하여 공통접선으로 볼 수 있고 두 곡선 f(x)와 g(x)가 x=a에서 접한다는거지만 게시글에서는 f(x)가 g(x)와 접하지 않을 때의 공통접선의 존재성에 대한 의문이므로 도함수끼리의 연립은 적절하지 않습니다.
인정
ㅋㅋㅋㅋ
님아
좌표로 구한 기울기랑 미분으로 구한 기울기가 다를수도 있는거 아닐까요
존재
감사합니다
그림 보면 f프라임x=g프라임x 인 y값(접선 기울기)이 2개 있는걸 알 수 있슴다
그냥 가로선접선 기준점으로
직선으로비교하심 편할것같습니다..
차피 일반적인경우는 직선 더하고빼주면되니까
감사합니다
항상 존재하려나요
넹 서로접하는게아니면..
a=sqrt(3)이면 접하므로 접하는 경우만 아니면 항상 두개의 공통접선을 가지네요
ㅜㅜ 식으로 ㅈㅇ명이 되는 거였군요 감사합니다
https://orbi.kr/00068688159
존재해용
봤습니다 감사합니다!
https://orbi.kr/00068696503/