[이동훈t] 기출 1회독 이후가 더 중요 (+실전개념목차PDF)
2025_이동훈기출_실전개념목차.pdf
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
벌써 2월 중반이 넘어가네요 ...
세월 참 ... 빠르고 ...
규칙적인 생활을 하고 계실 것으로 믿습니다 !
2025 수능 대비를 빠르게 시작하신 분들은
이미 평가원 기출을 거의 다 풀어가실 것 같은데요 ...
평가원 기출은
다음과 같이 3회독 할 것을 권합니다.
각 단계에서 달성해야 할 목표까지 써보면
1회독 : (어떻게 든) 답은 모두 맞히기
2회독 : 실전 개념을 정리한 후, 문제를 정확히 이해하기
3회독 : 문제 사이의 관계까지 이해하기,
다양한 풀이를 찾아보고, 그 중에서 최선의 풀이를 결정하기
2025 이동훈 기출이 기출은
3회독에 최적화된 책인데요.
2025 이동훈 기출 평가원 편 (또는 평+교 편)에는
실전 개념이 포함되어 있습니다.
(그래서 별도의 수능 개념서 필요하지 않으시고요.)
실전 개념 목차는
이 글에 PDF 파일로 첨부하였으니
다운 받으시고요.
(일전에 올려드린 파일과 동일합니다.)
또한 평가원 기출의 경우에는
최대한 많은 풀이를 수록하기 위하여 노력했습니다.
( [풀이1] 또는 시험장 풀이 표시가 된 풀이만 읽으시면
그 어떤 기출문제집 보다 빠르게 주요 풀이 완독 가능 하시고요.)
평가원 기출 1회독 이후에
실전 개념으로 각 문제가 가지고 있는
이론적인 배경까지 정리한다면
안정적인 1등급 / 만점을
매우 높은 확률로 달성할 것입니다.
이건 뭐 ...
내가 최근 5년 간 가르친 학생들로
이미 임상 실험을 마쳤고.
특히 낮은 2등급 분들은 ...
평가원 기출 1회독 + 실전 개념 정리
딱 요걸
제대로 하시면
안정적으로 1등급에 안착하시게 됩니다.
(낮은 2등급은 N제, 실모, ... 등등을
더 푸는 것보다 ...
평가원 기출 1회독 제대로 한 번 더 하시는게
성적 향상될 확률이 높아집니다.
이건 내가 선생으로 가르쳐 봐서
더 잘 아는 거고 ...)
이때,
제대로
=
평가원 기출 전개년
+ 맑은 정신으로 하루에 최소 3~4시간 이상
+ 실전 개념으로 이론 까지 정리
(미적분 선택 기준으로 3 개월 내외 생각하시고 ...
그런데 난 1달 만에 다 하겠다 ...
이러면 날림 공사 됩니다.
그럼 나중에 또 해야 하는데 ...
그럼 또 귀찮고 ... 하기 싫고 ...
이렇게 되죠.)
특히 1등급 이상 원하시는 분들의 경우 ...
평가원 기출은
최근 기출, 고대 기출 모두 풀어야 합니다.
출제자 분들이
이 둘의 밸런스를 맞춰서 출제 하니까요.
자 이제 ...
각 과목의 실전 개념을
기출 문제와 함께 확인해보실까요 ?
수학1 - 등호가 2개 들어간 식 (가비의 리)
이 주제에 해당하는 기출 입니다.
이 주제에 해당하는 실전 이론 입니다.
이 주제의 실전 개념의 구성은 다음과 같습니다.
등호가 2개 들어간 등식을 처리하는 일반적인 설명,
간단한 예제,
심층 주제인 가비의 리
이 주제는 더 이상 정리할 것이 없을 정도로
자세하고, 체계적으로 설명해두었습니다.
수학2 - 삼차함수의 그래프 (변곡접선)
이 주제에 해당하는 기출 입니다.
이 주제에 해당하는 실전 이론 입니다.
수학2에서는 변곡점, 오목볼록을 배우지 않지만
기출문제를 보면 이에 대한 이해가 필요한 경우가 있으므로
수학2에서도 변곡점, 오목볼록, 변곡접선에 대한
설명을 해두었습니다.
위의 예제는 산술적인 풀이, 기하적인 풀이가 모두 중요하므로
이 두 방법을 모두 소개하였습니다.
특히 산술적인 풀이는 삼차방정식
(x-alpha)*(ax^2+bx+c)=0
에 대한 일반적인 해법을 적용해야 하고 ...
이 계산법은 수능에서 종종 출제되고 있으므로
반드시 익혀 두어야 합니다.
미적분 - 초월함수의 미분성 (합성함수)
이 주제에 해당하는 기출 입니다.
이 주제에 해당하는 실전 이론 입니다.
이 주제의 실전개념 구성을 보면.
합성함수 f(g(x)) 의 미분가능성에 대한 일반적인 설명,
간단한 예,
좀 더 복잡한 예
(산술적인 풀이와 기하적인 해석)
꼭 정리해야 하는 점들을
가능한 모두 다루었습니다.
확통 - 포함과 배제의 원리
이 주제에 해당하는 기출 입니다. (& 풀이)
이 주제에 해당하는 실전 이론 입니다.
포함과 배제의 원리는
경우의 수와 확률에서 종종 출제되는 개념 입니다.
교과서에서는 직접적으로 설명되어 있지 않으므로
실전 개념을 통해서 추가적으로 학습해야 합니다.
기하 - 벡터의 덧셈과 뺄셈 + 내분외분
이 주제에 해당하는 기출 입니다. (&풀이)
이 주제에 해당하는 실전 이론 입니다.
시점이 일치하지 않는 두 벡터의 합 (내분외분)을
어떻게 처리해야 할 지에 대한 설명 입니다.
이 설명은 교과서에서 다루지 않지만
기출 문제를 풀 때 유용한 경우가 많으므로
꼭 익혀두어야 할 것입니다.
그 외에도 5과목 모두 반드시 익혀야 하는
실전 개념을 모두 수록하기 위하여
노력하였습니다 !
2025 이동훈 기출과 함께
올해 승리하시길 바랍니다 ~~!!!
ㅎㅍ ~
2025 이동훈 기출 사용법 (+실물사진)
[이동훈t] 2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 2025 이동훈 기출 실전 개념 목차
고1 평가원 기출문제집
[이동훈t] 2025 이동훈 기출 고1 수학 PDF 무료 배포
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
나중에 독립하면 키우고싶다..
-
김범준vs이창무 0
-
궁금
-
왜 줌? 대놓고 기만이면 저격이든 댓글이든 삼가하고 먹금하면 될 문제를
-
찌발 중앙대야 0
조기발표 해줘잉
-
아살려줘 1
기침할때마다목터질거같고피맛나
-
에휴 ㅅㅂ......
-
쌩재수냐 반수냐 0
수시러였는데 적정은 한둘 나머진 상향으로 써서 6광탈하고 갑자기 정시러가 되었는데요...
-
ㄱㄱ
-
스켈핑 매매는 0
참 어려운 거 같아요 힘들고
-
휴
-
건대 점공 0
이거 발뻗잠 가능? 등수 점점 떨어지는데 제발
-
빨리해
-
중대 발표함 1
15일에
-
안녕하세요 기회균형(일명 기균이라고 불리는)전형에 해당하시는분들에게 알려드립니다....
-
YOU ARE MY SPECIAL 임마왔노 귀여우네 오또오지마쇼오 또또 전쟁 귀여운...
-
뺏겼네... 3
-
외대에서 삼수 2
재수로 외대 ld,lt,국통,경영 왓는데 여기서 어디까진 가야 삼수 성공임?
-
덕코 바닥날 예정 13
덕코주세요
-
고대 학고반수 1
올해 고려대 걸어놓고 수능 한번 더 볼 것 같은데 고려대는 학고반수 가능한가요 ?...
-
동생 독감이래요 10
-
궁금한게 있는데 횐급받을때 대학 등록 안하면 못받는건가요?? 5
아니면그냥 합격증만 있느면 환급 시켜주는건가요?
-
발바닥과 엄지발가락이 아파 통풍재발했나
-
시발 국어는 1학년때부터 백분위 97 밑으로 떨어진 적 없고 영어도 항상 90...
-
간이 아파 1
하는 게 느껴질지도
-
진짜 ㅈㄴ 시원한...like할맥
-
대성 아닌가? 국영수탐탐 음 아니네 메가도 괜찮네
-
수시가 ㅈㄴ 힘드네 교대는
-
냥인칼 추합? 2
추합 예측 ㄱㄱ
-
아무리 찾아봐도 시간 및 장소 등을 찾아 볼 수가 없어서 그런데 장소랑 시간 나온...
-
한양대야… 0
제발 조발 좀 해줘라 하루하루가 피말린다
-
내년 입학전 일반화학 다시보려하는데 브라운교재랑 또 어떤책 많이쓰나여??
-
하 개피곤하다 다시 자고싶음
-
대로로 1
콘서트여운이아직도
-
쉽지않군
-
ㅠㅠㅜㅜ언제쯤다시할까요….
-
거짓말이라해줘...
-
주인 잃은 레어 2개의 경매가 곧 시작됩니다. 도원결의"하나 된 오르비, 하나의...
-
오르비무섭네 12
에효효
-
2000년대 초 오르비는 말그대로 최상위권 수험생 커뮤였음 수시도 없거나 적고...
-
서울 눈온다
-
조발 0
설 연류때도 함요?
-
아침을깨우는노레 0
https://youtu.be/zApmafiEzFw?feature=shared
-
어제 보고 깨달음 ㅇㅇ
-
이번에 대학 입학하는 카투사가 가고 싶습니다... 어쨌든 신검 언제 받아야 하나요?
-
.
-
갓생을 막을 수 없다
-
이번주는 수열을 쉽게 공략하는법에 관하여 대치동 현강 강사의 자존심을 건 퀄리티로...
-
사탐은 늦게 시작해도 된다지만.. 작년에 너무 늦게 시작했다 망해서요
-
이번주는 수열을 쉽게 공략하는법에 관하여 대치동 현강 강사의 자존심을 건 퀄리티로...
잘쓸께요 흐흐哈哈?哈哈?