수학 문제를 분석한다는 것
안녕하세요. 언제나 올바른 교육을 추구합니다.
2024학년도 수능 8번 문제를 가지고 말씀드리려고 합니다. 꼭 문제를 풀고 읽어 보시길 바랍니다.
풀이 4가지를 보겠습니다.
질문 1 : < 풀이 1 >은 답을 구할 수 있는 방법 중에 가장 바람직하지 않은 방법이라고 할 수 있습니다. 그 이유는 무엇일까요?
질문 2 : < 풀이 2 >는 f(x)를 구해서 문제를 해결한다고 가정을 할 때, 가장 안정적이고 해결하는 시간을 줄일 수 있는 방법이라고 할 수 있습니다. 그 이유는 무엇일까요?
질문 3 : < 풀이 3 >은 < 풀이 1 >과 다르게 식의 변형 과정에 일관성이 있습니다. 그 이유는 무엇일까요?
질문 4 : < 풀이 4 >와 같은 방법을 찾는 것은 <문제를 해결하는 시간>을 줄이고, 문제의 해결 과정을 간명하게 할 수 있는 중요한 방법입니다. 그런데 학생이 이와 같이 해결할 수 있게 하려면 어떻게 배워야할까요?
질문 5 : < 풀이 1/2/3/4 >의 점수를 서술형으로 1~10점까지 줄 수 있다면 몇 점 씩 주고 싶은가요?
댓글 달아주세요.
[더 생각해보기]
1탄 [글의 시작 - 묻는 것에 따라 어떻게 계획하고 행동을 할 것인가 생각하자]
2탄 [해설지가 뭐 이래...? 해설이 아니라 계산지 아닌가....? (feat. 수능 13번)]
3탄 [수능 5번, 맞힌 문제로 공부하기]
4탄 [추측과 정당화, 수능 12번 (부모의 마음을 가진 평가원)]
5탄 [강사 중 제대로 푸는 것을 본적이 없는 문제]
6탄 [수학 문제 풀 때 계획(생각)을 왜 안해?(수능 10번)]
7탄 [원래 실전개념 같은 것은 없어요.]
8탄 [수학 공부를 제대로 하는 방법.]
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
갓반고였는데 최상위권들 싹다 국어 박살나서 재수하러감. 수시 의대 붙은 두 명이...
-
수능날 비왔을때 3
수능 끝나고 핸드폰 받아서 나왔는데 밖은 어두침침하니 흐리고 비는 추적추적 내리고...
-
ㅈㄴ 대단한거 아님? 물론 수영탐 때문에 많이 까였지만
-
내 유일한 자랑 6
23 수능 국어 게딱지 3점짜리 맞춘 것
-
작년국어 잘보신분들 있나요?!
-
수능끝나고 입시동안 살 존나 쪄서 살뺄때 위고비라고 이번에 우리나라 들어온 다이어트...
-
여드레 입갤 0
그러합니다
-
표점이나 잘 맞춰봐라 23 화작 24 확통 탐구 표점도 이번에는 잘 해봐 좀
-
미치겠음 걍
-
하긴 수능이 8일 남았는데....
-
대성 신규 한국사쌤 2분 오셨는데 권용기쌤 나가시려나
-
23: 와 시발 문학 20분컷ㅋㅋㅋㅋ이러면서 화장실 시끌시끌 24: 정적
-
ㄹㅇ 30초컷 남?
-
국어가 어렵기를 바라다니 난 고1 때 멘탈에 완전 금간게 아직도 트라우마인데
-
시발점 뉴런 수분감 드릴 킬캠은 알겠는데 드릴 종류가 너무 많아서 순서대로...
-
시간이 참 밭습니다
-
과탐 전부 47이였었나 이때 사람들 다 쌍욕했던걸로기억하는데 사탐런의첫번째기회였다죠어쩌면..
-
할머니 욕하는글이랑 잊잊잊×300번 써서 올리는 글 이런거 있었음
-
일단 물국어 기원 14
대학좀 가자
-
그니까 수능포기 ㄴㄴ
-
평균적으로 1년에 표점 6점(백분위 7)정도 점수가 오름
-
시간 좀 줄여야할까요? 11덮기준 30분 약간 넘게쓰고 1틀이였습니다
-
십덕 같음? 7
그래도 이거보면 기분 좀 좋아짐
-
일단 선택과목은 평이해야함 작수처럼 나오면 안된다고
-
맨 앞자리에 국어 개씹불이면 마지막 2분 전에 여유롭게 팬 내리고 제출한 후 쉬는...
-
https://orbi.kr/00019169387...
-
결과적으로 님이 살아남아야 좋은 건데 매우 높은 확률로 님도 같이 불타올라서 재가...
-
공부 잘 하는 건 아니지만 수능날에 국어와 영어는 어떤 지문으로 수험생들을 감동시킬...
-
국어 모고 언매 2
아무리 오래 걸려도 몇 분 안에는 끊어야 함? 20분은 돼야하나
-
보통 3~4 뜨고 잘찍으면 2뜨는데 김종웅쌤 3시간 한국사? 그거 해도 되나요
-
(맨 뒷자리라 사물함에 머리를 기대고 눈물을 글썽이며)개조졌네… 걍 포기각서쓰고...
-
25 국어 기원 2
독서 2211 문학 2411 언매 2506 언매 이번엔 쉽게 내조...
-
1컷표점도 작수가 젤 높고 작수가 1받기는 가장 어려운 시험임 22때는 독서 존나...
-
잘하시는분들은 널널하게 다 풀고 시간 남는건가요? 어떻게..
-
걍 점수고정형인간에서 좌우점수움직임장치 조그만거 추가된수준이라 그러는거임 걍
-
제발 입시판 뜨고 싶다
-
이제는 오르비를 그만해야 하지 않을까요 아님 말고
-
잘가라. 그저 시대를 잘 타고났을 뿐인 범부여
-
이런 말해서 미안한데 진짜 너가 잘볼까? 너가 네 생각만큼 국어를 잘할까?
-
애니 주인공이 나보다 어리다니...... 믿기지가 않는다........
-
문실정 듣고 4
문학 실력 떡상했다 1회 소설 푸는거마다 반타작했는데 점점 정답률 올라가더니 오늘 푼거 1개틀렸음
-
이미 기출로 아카이브된 불국어 시험지가 3개나 있고 상상할 수 있는 상한선이 전보다...
-
※편의상 반말로 작성했습니다 우선 02년생(딸피)인 나는 내년 무휴반을 위해서 오늘...
-
대부분은 수능 끝나고 사라진다는거임
-
최근 3년동안 사탐 만표랑 1등급 표점 그 사진 갖고 계신 분 있을까요?
-
국잘수망은 불국어면 표점 먹을 가능성이라도 있지만 물국어면 대학을 못가요 ㅠㅠ
-
기분이 꿀꿀하다 4
제가 이전에 올린 글을 참고하여 보시면... 찾을 수 있을...거라 생각합니다! ㅎㅎ
답변1: f(x) 구해서 대칭성 이용해 적분한 것인데 무엇이 문제?
답변2: 미지수를 4개나 잡고 시작하는데 어떻게 가장 안정적이고 해결하는 시간을 줄일 수 있는지?
답변3: 인수분해를 하려면 인수를 하나씩 확인해서 조작하는 것이 편하다고 생각하는데, 저런 식으로 각을 볼 수 있는 것이 더 어렵지 않은지?
답변4: 첫 번째 문장에 동의하지 않음. 저렇게 하려면 다항함수를 맞이했을 때 미지수 하나씩 활용하여 식을 작성하는 습관을 들여라?
답변5: 8점, 왜 f(x)가 삼차함수이고 ㄱ이 x에 대한 항등식인지를 고려할 때 실수 전체의 집합에서의 f(x)식을 확정지을 수 있는지에 관한 서술이 부족함. x->1 극한을 조사하여 f(1)값으로 생각할 수 있음을 언급했다면 더 좋았을 것
10점, 흠 잡을 데가 없음
8점, 풀이 1과 마찬가지의 이유
10점, 흠 잡을 데가 없음
정성들여 작성해 주셔서 감사합니다. 답변에 대한 의견은 댓글이 10명 정도 달리면 남기도록 하겠습니다.
글을 읽으며 생각을 하나씩 작성해보았는데 질문5에 대해 생각하다보니 아...! 싶었습니다 ㅋㅋㅋㅋ 내신 서술형 문항을 대비할 때는 결국 흠 잡을 곳 없도록 만드는 것이 점수를 잃지 않는 팁이라면 팁인데 풀이1, 풀이3은 '논리적으로 완벽한가?'라는 질문에 공격 당할 수 있는 부분들이 보이네요
좋은 글 덕분에 생각 하나 배우고 갑니다, 감사드립니다!!
[더 생각해보기]
1. 240906
논리적인 풀이를 작성한다면 f'(x)를 구하고 증감표를 작성하여 x=-1에서 부호가 +에서 -로 바뀌고 x=3에서 -에서 +로 바뀌므로 f'(-1)=f'(3)임을 이용해 a, b값 결정 가능 --> 이후 f(-1)의 값을 구해주기
2. 241108 변형
논리적인 풀이를 작성한다면 (x-1)f(x)=3(x-1)(x^2+x+1)에서 x가 1이 아닐 때 f(x)=3(x^2+x+1)이고 f(x)가 다항함수이므로 x=1에서의 함숫값과 극한값이 일치함을 이용 --> 항등식의 양변을 x-1로 나누고 x->1일 때의 극한을 구해주면 그 값이 곧 함수 3(x^2+x+1)의 x=1에서의 함숫값과 일치함을 보일 수 있음
따라서 실수 전체의 집합에서 f(x)=3(x^2+x+1)이고 구간 [-2, 2]에서의 적분값을 구할 때 정적분의 성질에 의해 3x^2, 3x, 3을 각각 적분하는 것과 같음 --> 미적분학의 기본 정리 적용하는 계산 과정을 서술하고 3x의 적분값이 0이 됨을, 3x^2와 3의 적분값은 직접 구해주면 끝
ㄴ 대칭성을 적용하고 싶다면 기함수와 우함수에 대한 적분 성질이 "알려져 있다"라고 말할 수 있을 듯... 엄밀한 증명은 미적분에서 치환적분법을 학습해야 일반화 가능하기 때문
[더 생각해보기]의 1번은 힌트를 드리자면... a와 b를 구하지 않고 풀 수 있다면....?
f'(x)=3(x+1)(x-3)이고 f(0)=1이기에 미적분학의 기본 정리를 적용하여 a, b값을 구함 없이 답을 낼 수 있겠으나 안정적인 풀이 (내신 서술형 답안 작성을 기준으로 생각했었습니다) 를 지향한다면 직접 두 값을 구해주어 f(x) 결정하는 것이 깔끔하다 생각했습니다!
1. 제일 먼저는 왜 (x-1)로 묶었을까요?
공통인수를 묶을 수 있을 때 묶으면 식을 단순하게 정리할 수 있다고 생각합니다, 수학(상) 인수분해에서 가장 먼저 학습하는 사고 과정이라고도 생각합니다. 따라서 좌변이 (x-1)f(x)로 정리될 수 있는데 좌변도 (x-1)을 인수로 잡아 분해할 수 있으니 식을 보자마자 우변을 3x(x^3-1) 로 바라본 후 3x(x-1)(x^2+x+1)로 생각하는 과정이 자연스럽다고 봅니다.
이후 실수 방지를 위해 연산을 한 번에 한 단계씩 접근한다는 생각으로 양변을 x-1로 나누어주면 x가 1이 아닐 때 f(x)=3x(x^2+x+1)라는 식을 얻을 수 있고 이후 원활한 적분을 위해 분배 법칙에 따라 f(x)=3x^3+3x^2+3x로 식을 잡아주는 것이 자연스럽다 생각했습니다!
1번이 부족한 이유는 적분구간에 x=1이 포함되어 있어서인가요??
저는 아래와 같이 생각합니다,
f(x)가 다항함수이기 때문에 x가 1이 아닐 때 극한 x->1을 양변에 (x-1)f(x)/(x-1)=(3x^4-3x)/(x-1) 취해주면 f(1)과 x=1일 때 함수 3x(x^2+x+1)의 함숫값이 일치함을 논리적으로 보일 수 있어
이 부분 언급하여 실수 전체의 집합에서 f(x) 식이 3x(x^2+x+1)임을 보이면 문제 없습니다, 다만 대칭성을 적용할 때 왜 x^3, x와 같은 항이 지워지는지에 대한 서술이 있어야 (내신 서술형 문항 답안 작성하는 상황이라 가정하면) 풀이가 더 완전해진다고 생각합니다!
아닙니다. 첫번째는 변형을 하는 이유가 있어야합니다. 그리고 인수분해하고 나서 다시 전개하고...
인수분해 해야한다면 왜 (x-1)f(x)로 주지 않았을까요?
인수분해 할 줄 아는 것과
인수분해를 할줄 아는 것에 대해 평가하는 것은
전혀 다른 이야기 입니다.
문제에서 요구하는 학습 성취기준에 인수분해 할 줄 아는지를 평가하려고 할까요?
참고로 (x-1)로 인수분해 한 후에 나눌때는 삼차함수임으로 그냥 나누면 됩니다.
답변 1: 개인적으로 학생들이 <풀이3>으로 가기 위해 <풀이1>처럼 가는 것이 논리적이라고 생각합니당. 저는 <풀이1>도 바람직하다고 봅니다..!
답변 2: 우변에는 4차와 1차만 있고, 좌변에는 간단히 f(x)와 xf(x)밖에 없기 때문에 답을 향하는 가장 안정적인 방법이라고 생각합니다
답변 3: 답변 1처럼 생각하기 때문에 저는 잘 모르겠습니당 ㅎ
답변 4: 구하려는 값을 본 후 구하려는 값에 집중하는 방법이 좋다고 생각합니다!
답변 5: 9점, 10점, 9점(1과 동일), 10점
더 생각해보기 : 24.9월.6번-> 구하는 값에 집중해서 -1과 3이 극값이라는 것을 이용해 비율관계로 극댓값을 k로 둔 채 f(x)= (x-5)(x+1)^2+k , f(0)=1을 이용해 k를 구한다?!
풀이 1을 하면서 이상하다고 느낄만한 부분이 없었나요...? 인수 분해하고 다시 전개하고...
3x를 인수로 뽑아내는 과정이 어색해보일 수 있을거 같습니당! 저는 개인적으로 학생들이 우변의 식을 보고서 바로 <풀이 3>처럼 인수분해가 되겠다고 생각하긴 어렵지않을까 싶은 생각에 풀이1이 자연스럽다고 생각했습니다!
모든 인수를 뽑아낼 이유가 있었을까요?
풀이 1과 풀이 3은 목표가 2등급 정도의 학생에게는 칭찬해줄 수 있는 풀이이긴 합니다. 하지만 공부를 하는 사람으로써 본인이 식을 변형하며 왜 그렇게 변형하고 있는지에 대해 이유를 알아야합니다.
좋은 말씀이십니다!