241128(미) 수식 풀이
일단 "모든 양수 t에 대하여 x에 대한 방정식 f(x)=t의
서로 다른 실근의 개수는 2"라는 정보와 "모든 실수 x에 대하여
f(x)>=0"이라는 정보, 그리고 "실수 전체의 집합에서 연속인
함수 f(x)"라는 정보와 x<0에서 주어진 f(x)식으로부터
다음과 같은 상황을 떠올릴 수 있어야 한다.
대충 f(x)의 그래프가 x<0에서는 감소하고 구간 [0, p]에서는 (p>0)
상수함수의 그래프를 보이다가 x>p에서는 증가하는 상황
2015개정교육과정 상 정적분은 닫힌 구간에서
연속인 함수에 대해 논하므로
다음의 두 함수를 정의해주자.
그러면 함수 g(t), h(t)가 정의된 방식에 따라
다음의 두 항등식을 얻을 수 있다.
이를 이용해 닫힌 구간 [p, 7]에서의 적분에
치환을 섞어보자! (치환적분법, 역함수를 이용한 치환)
부분적분법은 두 함수가 곱해진 꼴의 함수를 적분할 때
하나를 미분, 하나를 적분한 새로운 함수를 적분하는 상황으로
적분 상황을 바꾸어주는 방법이다.
x>0에서의 f(x) 식을 아직 알 수 없기 때문에
f(7)값을 직접 구할 수는 없다.
하지만 주어진 관계식 2g(t)+h(t)=k (t>0) 을
활용해보면
x=7과 x=(k-7)/2에서의 함수 f의 함숫값이 일치함을
확인할 수 있으므로 x<0에서의 f(x) 식을 이용하여
f(7)값을 구할 수 있음을 알 수 있다.
이제 주어진 관계식을 이용해주면
구간 [0, f(7)]에서의 함수 p(t)의 적분값만 구해주면
주어진 조건식의 좌변을 정리할 수 있다.
구간을 표기할 때 [-3, 0]처럼 해야지 [0, -3]은 안된다고
알고 있긴 한데 편의상 이 정도는 넘어가자
중간에 d(4x^2)=8xdx는 그냥 내가 쓰는 표현인데
대충 미분(differentiation) 말고 미분(differential)에 관한
생각을 이어와 dy=f'(x)dx 표기를 살려
치환적분법 적용할 때 표기를 단순화하는 방법이다.
어디서 배운 건 아니고 치환적분 문제 풀다가 만들었는데
떠올리기 어려운 것은 아니라 사용하는 다른 분들께서 계실 수도!
이제 조건식의 우변에 위치한 정보를 살리면
k값 후보가 2개 나오는데 아까
h(t)=7일 때 g(t)=(k-7)/2이었고 g(t)<0이므로
k-7<0이다. 따라서 k=5로 확정된다.
답은 2번이다.
+ 아니면 2g(t)+h(t)=k (t>0)로 x>0에서의
f(x) 식을 직접 구할 수도 있는데
2g(t)+h(t)=k 와 f(g(t))=f(h(t))=t 적용하면
각 구간 별 식을 논리적으로 작성해낼 수 있다.
직관적인 상황 파악을 위해 h(t)>0로 표기했지만
f(g(t))=t 에서 g(t)<0이므로 2g(t)+h(t)=k,
h(t)=k-2g(t)에서 h(t)>k임을 바로 확인할 수 있다.
k=5 대입하면 함수 f(x)의 그래프는 다음과 같다.
그럼 바로 f(9)=2x(9-5)xe^(9-5)^2,
f(8)=2x(8-5)xe^(8-5)^2 구해 답 낼 수 있다.
++ 이상입니다, 다만 저는 개인적으로
이것을 대략적으로 생각해내서 t값이 조금 증가할 때
x<0에서 주어진 f(x) 식에 따라 g(t)의 변화를 생각하며
h(t)의 변화를 따라가보는, 그렇게 하여
x>0에서의 f(x) 식을 추론해보는 사고 과정이
현재로서 가장 현장에서 시도해볼 만한 사고 과정이라고
생각하고 있습니다.
읽어주셔서 감사드립니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고1 3 6 9 고2 3 6 9 11 고3 3 5 6 7 9 10 순서대로...
-
근데 팩트는 불국어 풀면서 생사를 넘나든 사람들보다 8
토끼랑 맞짱까서 살아남은 황만근이 더 대단하다는거임.. ♧♧♧♠황만근과 거대한...
-
잘자용
-
갓반고였는데 최상위권들 싹다 국어 박살나서 재수하러감. 수시 의대 붙은 두 명이...
-
수능날 비왔을때 3
수능 끝나고 핸드폰 받아서 나왔는데 밖은 어두침침하니 흐리고 비는 추적추적 내리고...
-
ㅈㄴ 대단한거 아님? 물론 수영탐 때문에 많이 까였지만
-
내 유일한 자랑 6
23 수능 국어 게딱지 3점짜리 맞춘 것
-
작년국어 잘보신분들 있나요?!
-
수능끝나고 입시동안 살 존나 쪄서 살뺄때 위고비라고 이번에 우리나라 들어온 다이어트...
-
여드레 입갤 0
그러합니다
-
표점이나 잘 맞춰봐라 23 화작 24 확통 탐구 표점도 이번에는 잘 해봐 좀
-
미치겠음 걍
-
하긴 수능이 8일 남았는데....
-
대성 신규 한국사쌤 2분 오셨는데 권용기쌤 나가시려나
-
23: 와 시발 문학 20분컷ㅋㅋㅋㅋ이러면서 화장실 시끌시끌 24: 정적
-
ㄹㅇ 30초컷 남?
-
국어가 어렵기를 바라다니 난 고1 때 멘탈에 완전 금간게 아직도 트라우마인데
-
시발점 뉴런 수분감 드릴 킬캠은 알겠는데 드릴 종류가 너무 많아서 순서대로...
-
시간이 참 밭습니다
-
과탐 전부 47이였었나 이때 사람들 다 쌍욕했던걸로기억하는데 사탐런의첫번째기회였다죠어쩌면..
-
할머니 욕하는글이랑 잊잊잊×300번 써서 올리는 글 이런거 있었음
-
일단 물국어 기원 14
대학좀 가자
-
그니까 수능포기 ㄴㄴ
-
평균적으로 1년에 표점 6점(백분위 7)정도 점수가 오름
-
시간 좀 줄여야할까요? 11덮기준 30분 약간 넘게쓰고 1틀이였습니다
-
십덕 같음? 7
그래도 이거보면 기분 좀 좋아짐
-
일단 선택과목은 평이해야함 작수처럼 나오면 안된다고
-
맨 앞자리에 국어 개씹불이면 마지막 2분 전에 여유롭게 팬 내리고 제출한 후 쉬는...
-
https://orbi.kr/00019169387...
-
결과적으로 님이 살아남아야 좋은 건데 매우 높은 확률로 님도 같이 불타올라서 재가...
-
공부 잘 하는 건 아니지만 수능날에 국어와 영어는 어떤 지문으로 수험생들을 감동시킬...
-
국어 모고 언매 2
아무리 오래 걸려도 몇 분 안에는 끊어야 함? 20분은 돼야하나
-
보통 3~4 뜨고 잘찍으면 2뜨는데 김종웅쌤 3시간 한국사? 그거 해도 되나요
-
(맨 뒷자리라 사물함에 머리를 기대고 눈물을 글썽이며)개조졌네… 걍 포기각서쓰고...
-
25 국어 기원 2
독서 2211 문학 2411 언매 2506 언매 이번엔 쉽게 내조...
-
1컷표점도 작수가 젤 높고 작수가 1받기는 가장 어려운 시험임 22때는 독서 존나...
-
잘하시는분들은 널널하게 다 풀고 시간 남는건가요? 어떻게..
-
걍 점수고정형인간에서 좌우점수움직임장치 조그만거 추가된수준이라 그러는거임 걍
-
제발 입시판 뜨고 싶다
-
이제는 오르비를 그만해야 하지 않을까요 아님 말고
-
잘가라. 그저 시대를 잘 타고났을 뿐인 범부여
-
이런 말해서 미안한데 진짜 너가 잘볼까? 너가 네 생각만큼 국어를 잘할까?
-
애니 주인공이 나보다 어리다니...... 믿기지가 않는다........
-
문실정 듣고 4
문학 실력 떡상했다 1회 소설 푸는거마다 반타작했는데 점점 정답률 올라가더니 오늘 푼거 1개틀렸음
-
이미 기출로 아카이브된 불국어 시험지가 3개나 있고 상상할 수 있는 상한선이 전보다...
-
※편의상 반말로 작성했습니다 우선 02년생(딸피)인 나는 내년 무휴반을 위해서 오늘...
-
대부분은 수능 끝나고 사라진다는거임
와! 스텔체스 적분 아시는구나!
맞다 d(f(x))=f'(x)dx 이거 용어가 있었죠!! 잊고 있었네요 감사드립니다 형님
통일~연세~~
예전 23.11.22 수식 풀이 칼럼 정말 도움되었습니다 선생님! :D
도움이 되었다니 다행입니다! 231122 수식 풀이의 경우 제가 발견한 것은 아니고 어떤 의대생 분의 풀이를 보고 공부하다가 '오 이건 더 많은 수험생 분들께서 공부해두시면 좋겠다' 싶어 수식편집기 이용해 정리해보았을 뿐입니다.
수학적 재능이 없다고 스스로를 생각하는 사람으로서 항상 '멍청한 풀이'를 찾길 좋아하는데 231122에서 g(x)를 구하는 것만큼 1차원적인 사고로 답을 낼 수 있는 풀이를 아직 찾지 못했다 생각하여 요새도 심심할 때 식 전개해 구해보곤 하네요 ㅎㅎ
새해 복 많이 받으시기 바랍니다, 올 한 해도 행복한 순간들로 채워가셨으면 좋겠습니다!
+ 마지막에 g(t)값 변화에 따른 h(t)값 변화에 초점을 두어본다는 맥락에서... 현장에서 문항 처음 봤을 때 주어지 관게식 보고 y=-2x (x<0)와 y=x (x>0) 의 그래프를 그려보셨다는 다른 분을 발견했습니다!
확실치 않지만 t값 변화에 따른 g(t)값 변화, 그리고 그에 따른 h(t)값 변화를 살펴보아 x>0에서의 f(x) 개형 혹은 식을 대략적으로 유추래보라는 것이 출제 의도가 아니었을지 싶습니다.
마치 2023학년도 수능 22번이 평균값 정리에 초점을 두어 상황을 기하적으로 파악하면 f(x) 식을 세울 수 있었지만, 그냥 f(x)=x^3+ax^2+bx-3 두고 수식으로 밀어서 g(x) 식을 작성해낼 수 있었듯이
2024학년도 수능 미적분 28번은 항등식에 초점을 두어 상황을 기하적으로 파악하면 f(x) 식을 세워볼 수 있었지만, 그냥 주어진 정적분을 x=h(t)로 치환한 후 2g(t)+h(t)=k 이용, 그리고 다시 g(t)=x로 치환한 후 8x*e^{4x^2}를 치환적분을 통해 계산하여 k값을 결정할 수 있었던...
그러한 비슷한 맥락에서 바라볼 수 있지 않을까 하는 생각이 듭니다!