[서울대 수교과] (불연속)x(연속), 연속함수=0이어도 불연속이라고?
-이전 칼럼 모음
[서울대 수교과] 해설지 없이는 못 푸는 그대에게, 수I 삼각형 https://orbi.kr/00062038781
[서울대 수교과] 해설지 없이는 못 푸는 그대에게, 수II 함수의 극한(1편) https://orbi.kr/00062106944
[서울대 수교과] 해설지 없이는 못 푸는 그대에게, 수II 함수의 극한(2편)https://orbi.kr/00062139886
[서울대 수교과] 함수의 연속, 정의역이 핵심이다. https://orbi.kr/00065494895
안녕하세요! 저는 전교꼴찌 하다가 서울대 두 번 들어온 신동성 이라고 합니다. 오늘도 수학칼럼으로 돌아왔습니다!
오늘은 함수의 연속 2편입니다.
불연속함수와 연속함수의 곱함수의 연속성, 즉 간단히 말해서
(불연속)x(연속)의 연속성은 함수의 연속 단원에서 매우 자주 나오는 주제입니다.
그럴만 한 게,
두 연속함수는 더해도, 빼도, 곱해도, 나눠도(분모가 0이 아니라면) 무조건 연속이고,
두 불연속함수는 더하기, 빼기, 곱하기, 나누기 모두 직접 해봐야 하며,
불연속함수와 연속함수는 더해도, 빼도 무조건 불연속입니다.
그렇지만 (불연속)x(연속)은 연속이 되기 위한 아주 특별한 조건이 있어서, 그 조건만 체크하면 되죠?
많이들 알고 계시듯 그 조건은 바로, "불연속함수의 불연속점에서 연속함수의 함수값 = 0" 입니다.
그렇지만 이 조건은 사실 필요조건이기는 하지만 충분조건은 아니에요.
즉, (불연속)x(연속)에서 연속함수가 0임에도 불구하고, 곱함수 전체가 불연속일 수 있다는 거죠.
1. (불연속) x (연속) = (연속), "불연속함수의 불연속점에서 연속함수의 함수값 = 0"
우선은 혹시라도 저처럼 공부를 늦게 시작하신 분들을 위해, 이 내용부터 짚으며 시작해봅시다!
우선 (불연속) x (연속)의 간단한 예시를 살펴볼까요?
이렇게, 불연속함수 f(x)에 어떤 함수를 곱하냐에 따라, (불연속) x (연속)이 연속이 되기도 하고, 불연속이 되기도 하죠?
그런데,f(x)가 불연속인 x=1에 대해
곱함수가 연속인 위에서는 g(1) = 0이고
곱함수가 불연속인 아래서는 h(1) =/=0 임을 확인할 수 있어요.
눈치빠른 분들은 이미 아셨겠지만, (불연속) x (연속)이 연속이 되기 위해서는
불연속함수의 불연속점에서 연속함수의 함수값이 0이어야 해요.
가령, 불연속함수의 서로 다른 좌극한과 우극한에
연속함수의 같은 값을 곱해서
곱셈 결과가 같아지려면
곱하는 값이 무조건 0이어야 하지 않을까요?
수식으로 표현하자면,
이처럼, x=(알파)에서 불연속인 함수에 연속함수 g(x)를 곱해서 연속이 되려면,
연속함수의 함수값이 0이 되어야 함을 알 수 있어요.
그래서, 가령
이런 문제를 만나면
f(x)는 x=1에서만 불연속, 나머지에서는 무조건 연속
g(x)는 모든 실수 x에서 연속이므로
f(x)g(x)가 x=1에서만 연속이 되면 되고,
이때 (불연속)x(연속)이므로
g(1)=0
=1+k
-> k=-1
이렇게 결론을 낼 수 있어요.
수능이나 내신에 아주 자주 나오는 성질이니, 잘 기억해두세요!
2. (불연속) x (연속), 연속함수 = 0 이어도 불연속이라고?
이제 오늘의 메인 주제입니다!
위에서 말씀드린 내용까지는 모두들 알고 계실 거에요.
그렇지만, (불연속)x(연속)에서
불연속함수의 불연속점에서 연속함수의 함수값=0임에도 곱함수가 불연속일 수도 있어요.
그게 어떻게 가능하냐고요?
바로 이렇게요.
어떻게 된 일일까요?
분모가 0으로 수렴해서 전체가 무한대로 발산하는 불연속함수에서는
연속함수 = 0 임에도 불구하고
곱함수의 극한값이 존재하지 않을 수 있기 때문이에요.
바로 위의 예시가 딱 이 경우죠.
분모가 0으로 수렴해서 전체가 무한대로 발산하는 불연속함수 f(x)에 대해,
불연속함수 f(x)의 불연속점 x = 1에서 연속함수 g(x)가 g(1) = 0임에도 불구하고
곱함수의 분모에 여전히 (x-1)이 남아있어서, 곱함수가 무한대로 발산해버리는 것이죠.
그렇다면, 곱함수가 발산하지만 않으면 연속이 될까요?
이 예시에서는, 연속함수 g(x)에 (x-1)을 하나 더 곱해줬어요.
그러면 곱함수 f(x)g(x)가 x=1에서 1로 수렴하네요.
그러나, 극한값과 함수값이 달라서 여전히 불연속이 되었습니다.
(x-1)을 한 번 더 곱해보면 어떨까요?
드디어 연속이 되었네요.
눈치채신 분들도 있겠지만, 극한값 = 0이 되어야만 연속이 돼요.
왜 그럴까요?
이렇게 결론낼 수 있겠어요.
따라서, (불연속) x (연속) = (연속) 이려면,
단순히 "불연속함수의 불연속점에서 연속함수 = 0" 뿐 아니라
"곱함수의 극한값 = 0" 이 되어야 하고,
그러기 위해서는
"0을 만드는 인수를 곱함수의 분자가 분모보다 더 가져야" 하겠죠?
마지막으로, 이 개념을 활용해서 아주 빨리 풀 수 있는 문제를 살펴보고 마치겠습니다.
2021학년도 고3 7월 모의고사 12번입니다!
쉽죠?
이상입니다!
그리고 오르비학원에서 강의 진행합니다!
도형 관련 무료특강
수학II 미분 관련 무료특강
수학II4주짜리 개념+기출 특강
https://academy.orbi.kr/gangnam/teacher/464
많이 관심가져주시면 감사드리겠습니다 헤헤,,
공부에 도움이 되었다면, 추천팔로우댓글 많관부!!!!!
다음 칼럼 주제 추천이나 관련 질문 쪽지, 댓글도 아주 환영합니다!!!
수학 외적인 것도, 공부 외적인것도 ㄱㅊ습니당
이상입니다!ㅂㅂㅂ~~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㄹㅇ... 상근인 친구 있는데 진짜 너무부러움 ㅜ
-
그린 애플티인가 그거 마셨어야했음 우웩
-
전적대 후져서 이런거 없으니 탈출 시도중
-
.
-
원래 일상복으로 환복하면 안되는 건가 낯설다 낯설어
-
도대체 이거 감정 표현 뭐임? 따봉 티모 밖에 못봐서 처음봄ㅋㅋㅋ
-
언확사탐 기준 몇개나틀려야댐? ㄹㅇ 감도없고 기준도모르겟어서 대충만 물어봐여...
-
님들 속성 머임 7
전 불이에요
-
수능이나 토익을 떠나서 영어 기본 베이스를 만들고 싶어하는 사람인데..
-
애니 시청
-
덕코 걸고 6
고스톱이나 칠까용
-
그야 수험생이 없으니까. 사촌 형 누나 전부 나보다 최소 3살 더 많음 캬캬
-
물2 재밌음? 1
내신 때 물2반이긴 했음 수업은 들어간 기억이 없지만 ㅋㅋ
-
어쩌다보니... 다들 댓글로 친척 코스프레 좀 해보세요
-
일로 모여보쇼
-
절대안댐? 서울대 정시 어케반영하는지 하나도몰름 기냥물어보는거이
-
기저귀 갈아줘가며 키웠던 사촌동생이랑 대학을 같이간다고?? 아.
-
안녕하세요. 11
여붕이입니다 덕코를 보내주세요
-
+ 쇼메이커 아리로 아지르 매혹 맞춘것까지 최소 천번이상 보고 있는듯
-
이제 초등학교 드가는데 윷놀이하고싶엇나봄 ㅋㅋㅋ 자기가 직접말하긴부끄러웠는지...
-
물을 1
벌크업벌크업 마셔야겟다
-
몇달 사이에 ㅈㄴ늙은거 같네 이런 모습으로 친척들을 뵐 수 없어
-
질받함 4
선넘질아님
-
그게 나야 3
유감스럽게도
-
전전 or 컴공 고민중인데 가슴은 컴공이고 머리는 전전가라고 하네요... 그래도...
-
질문해주실분 4
심심해요 공부질분도 좋고 아무거나 ㄱㄱ
-
이거 설치/설약/설수 어디어디되는 점수임
-
그저 사-설-충 저런거 못풀어도 96이상 나오지 않나..? 사진은 옯비산임
-
ㅋㅋㅋ 병신들 4
-
딮기 평가 0
티딮전 처음할때는 티원이 어떻게 딮기 같은 팀한테 지냐고 개같이 까이더니 한화전까지...
-
열차출발한당 2
부지런행
-
잠이 부족한건가 4
암산테스트 저 단어 볼때마다 임신테스트기라고보임
-
정석킥 책에 있는데 지문이 너무 어려워요 ㅠㅠ
-
오르비 잘하시는 의반, sky반수생 분들 거의다 물2 하시고 사탐런 영향에다...
-
존나웃겻는데
-
키 185에 몸무게 100 넘기고 홍구 닮아서 쫌 무섭다
-
바로 시합종료에요
-
친한사람들도 애초에 없어서 개꿀이라노
-
70도 넘기고 싶다.. 수능끝나고 하는 가장 생산적인 일
-
최초합하신분들 lc단톡방 같은거 들어가셨나요?? 혹시 팀빌딩 날짜 나왔나요..?
-
사촌동생 (7)이 고사리 손으로 귤까서 먹으라고 줬어 종이접기로 비행기도 접어줌...
-
5모 22번만 조금 쉬운걸로 대체해서 수능으로 내도 역대급으로 변별력 있는...
-
인설의하려면 3
물1 버려야하나요?? 투과목 해야하나…
-
전엔 안 이랬는데 입맛이 변한건가
-
개졸려
-
친가/외가 할머니 할아버지만 뵙고 왔음
첫번째 댓글의 주인공이 되어보세요.