라즐리 [1084527] · MS 2021 (수정됨) · 쪽지

2023-11-19 21:26:59
조회수 3,995

2024학년도 수능 수학 미적분 28번을 풀어봅시다.

게시글 주소: https://rocket.orbi.kr/00065259762

일단 x<0에서 함수 y=f(x)의 그래프를 그려 보면 알겠지만, 해당 구간에서 함수 f(x)는 감소합니다.


방정식 f(x)=t의 작은 근을 g(t)라고 하면, 큰 근은 k-2g(t)가 됩니다. g(t)는 음수이고, k-2g(t)는 양수입니다.

이때, 다음 식이 성립합니다.

g(t) 대신 x로 바꾸면...

음의 실수 x에 대하여 위의 식이 성립합니다.

k는 상수인데, k-2x=s라고 치환합시다.

이때, 다음 식이 성립합니다.

이 식에서 s는 양수이고, (k-s)/2는 음수입니다. 여기서 s 대신 x를 대입하면...

이 됩니다. 여기서 x가 양수일 때, 정확히는 x>k일 때의 f(x)를 구할 수 있습니다.

모든 양수 t에 대하여 방정식 f(x)=t의 서로 다른 실근의 개수가 2가 되기 위해서는, 함수 f(x)가 x=0까지는 감소하고, x=k부터 증가하고, 0<x<k에서 f(x)=0이어야 합니다.

즉, 

이 성립해야 합니다.(0<k<7)

실제로 적분을 계산하여 k의 값을 구하면 k=5가 나옵니다.

x>5일 때, 

이 되므로

정답 : ②

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.


  • 첫번째 댓글의 주인공이 되어보세요.