수학 질문
저게 왜 (2,3) 점대칭이 되나요 미분하면 f(2+t)-f(2-t)=6 이 되는데 f(2+t)+f(2-t)=6 이되야 (2,3) 점대칭 아닌가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
글 리젠 뭐야 0
뒤졋네
-
“수능 경북 수석은 현역 의대생” 술렁...의대생 수능침공 현실화? 3
경북 지역에서 의대생이 2025학년도 대학수학능력시험(수능) 가채점 결과 수석을...
-
샤를 직접 보니 가슴이 벅차올라요.. 교수님이 들어오면 뭐하고 싶어요? 이러셨는데...
-
어디가 더 좋음? 분위기 군기 이런거 포함해서 설명해주실 분 쪽지도 좋아요
-
지금 통계학과, 경제/경영, 전기전자 정도 생각하고 있는데
-
2521 질받 2
일주일 됨 내가 25
-
수리논술 0
이거어케푸는지 아시는분 ㅎㅎ.. 좀 끄적여본건데 일단 제가풀어본것도 올려바요.....
-
수리논술 질문 0
인하대랑 건대 어디가 더 붙기 힘들죠??! 인하대 최저xx 건대 최저 2ㅎ5
-
군대를 많이 늦게 간 편이라 21년도 군번이고 23년도에 전역했습니다. 보직은...
-
지도덕후여서 우리나라 지자체 200여 개 세계 나라 200여 개 위치랑 이름 다...
-
코인 논란 ‘찐명’ 김남국, 野과세론 비판…“운동권적 사고서 벗어나야” 4
“시장 친화적인 경제적 마인드 탑재해야” 소위 ‘찐명’(진짜 친이재명) 이라고...
-
이재명 “코인 과세 가능한가”…금투세처럼 폐지 길 가나 [이런정치] 6
이재명, 비공개 지도부 회의서 ‘과세 가능한지’ 의문 수차례 제기 “해외거래소 통한...
-
흐흐
-
화미사탐지구로 26수능 참전
-
안돌거같네
-
강원대 의대 14명 강원대 약대 3명 가톨릭관동대 의대 10명 입결 어느 정도 될까요
-
쌍사vs쌍윤 1
둘중 머가 나음?
-
기사아아앙 6
다시 취침
-
자연대 중 택1 (수리과학부 제외) 지방 약대 수의대 중 택1 어디가심?
-
근데 설마설마 0
이번 화1 2509물1 (만백 93) 꼴 나는건 아니겠죠 그러면 진짜 안되는데
-
어제 매운거 먹었는데 11
[이하생략]..
-
고민되면 메디컬 1
절대불변의 명제임 고민조차 안 될 만큼 원하는, 생각만 해도 가슴이 뛰는 길이 있다...
-
왜살아야함? 9
수능>망함 친구>없음 나이>많음 살>존나찜 얼굴>좆망 행복>없음 추억>없음 정신>병듬 인간성>좆박음
-
걍 무조건 사탐이 나은거임?
-
근데 난 미적보다 기하를 더 못할 듯.. 공통에서 수1도형이 최약파트 중 하나
-
블부이 기상 8
공강 개꿀
-
좀 전에 내년 선발인원이 떴는데 올해 대거 미지정사태에도 꼴랑 50명 줄여놓고...
-
창팝 추천좀 3
이해가쏙쏙되잖아리슝좍이랑 리미제라블시리즈랑 쌀숭이 바리정같은 초 네임드는 봤음
-
나갔다와야지 9
흐흐
-
사실 로스쿨을 ‘안’ 가는 것보다 ‘못’ 가는 거에 가까워보이긴 하는데…
-
과탐 하나 노쇼하는 꿈 꿨네 하
-
서울대 1차 떴냐? 10
나도 슬쩍
-
제가 살면서 주변을보면 자기가 하고싶었던거 있었는데 꿈을 접고 성적에맞춰...
-
아니 이나경 6
어떻게 마스크 크기가 저렇게 남냐???
-
메가만 100 뜨고 고속, ebs, 이투스는 99로 보는데 100 안될까요? 근데...
-
올해 진짜 공통 역겹게 나왔었는데 25공통 반영해서 좀 쉽게 내려나 아니면...
-
국어와 수학은 "강"평 ㅋㅋ
-
안녕하세요 단국대 치의학과 4학년 학생입니다. 혹시 충청 또는 천안에 사시는 분...
-
번호별문제 다 이렇게 갖다박으면 ㅇㅇ 물론 이문제들 싹다 처음 보는거라고 가정하고 ㅇ
-
덕코 9
다 털었다 이제슬슬장례식을
-
내신은 3.6 모고는 44344인데 우리학교가 수시로만 학교를 보내서 정시를 그다지...
-
고3 부터 왜케 살쪘냐는 소리 많이 듣네
-
정시 기균 라인 좀 잡아주시명 감사하겠습니다 ㅜ
-
3번에 D국이 국민들 입장 물어보는거 반대친 사람 있을까요?
-
마음을 어떻게 추스려야 할지...
-
둘 다 붙으면 어디감? 대학 자체 네임벨류랑 졸업 후까지 종합적으로 봤을 때 어디가...
-
14 고사장 (컨버전스홀)
-
사람 왤케 많냐 1
음
-
떴으니까 올리지ㅋㅋㅋㅋ
미분하면 플러스로나오네용
왜 플러스로 나오는지 모르겠어요 ㅠㅠ
수2아니라 미적분맞죠??
수2인데 저거 처음 봐서요;;
엥 수2에요..?
f(-x)라는 함수가 있다고 가정하면,
이걸 미분하면 -f'(-x)가돼요
근데 이거 미적분에서 배우는걸로 아는데..
수2 n제 문제인데 처음 봐서;;
점대칭 함수 적분하면 구간길이 곱하기 대칭점높이라
구간길이 2t 곱하기 3 해서 6t라서 3이 대칭점 높이가 되는거같아요
근데 문제에 적혀있는걸로만 봐선 2가 점대칭의 중점인지 알수가 없지 않나요?ㅠㅠ 그래도 점대칭 중점이 x=2라고 가정하면 도형으로 풀리긴 하네요
F'(x)=f(x)라 하자.
\int_{2-t}^{2+t} f(x)dx 는 미적분학의 기본 정리에 의해 F(2+t)-F(2-t)이다.
주어진 항등식의 양변을 t에 대해 미분하면 부정적분의 정의와 합성함수 미분법에 의해 f(2+t)+f(2-t)=6이 되는데
따라서 함수 f(x)가 점 (2, 3) 대칭임을 확인할 수 있다.
미적분에서 학습하는 합성함수 미분법에 따르면 함수 f(x)가 x=a에서 미분 가능하고 함수 g(x)가 x=f(a)에서 미분 가능할 때, 함수 g(f(x))의 x=a에서의 미분계수는 g'(f(a))*f'(a)입니다. 확장해보면 미분가능한 함수 f(x), g(x)에 대해 함수 g(f(x))의 도함수는 g'(f(x))*f'(x)가 됩니다.
다만 수학2 문항이라면 합성함수 미분법을 적용할 수 없는데.. 적당히 그래프 그려 직관적으로 파악하는 것은 그리 엄밀하지 못한 방식이라는 생각이 들어 어떻게 설명해야할지 현재로선 잘 모르겠습니다.
아… 함성함수 미분을 못쓰는구나…. 그럼어케 설명하지