칼럼7) 등차수열 합은 이차함수다
우선 기출 문제를 하나 보겠습니다.
(더 내리면 스포)
답은 4번입니다.
제가 전에 썼던 칼럼에서 등차수열 관련 학습할 내용을 다음과 같이 분류해놓은 적이 있는데요, 이 글은 세 번째
3. Sn 자체의 성질에 대한 칼럼입니다.
등차수열의 합은 결국 이차함수이기 때문에, 이차함수의 여러가지 성질을 이용해서 풀이를 해갈 수 있습니다.
<풀이>
지금 제가 알려드리는 방법은 일반적으로 알려진 풀이와 큰 흐름은 같으나, 디테일에서 차이가 납니다. 더 빠르게 답을 내실 수 있을거에요.
우선 Sn을 그려봐야겠죠.
공차가 음수이기 때문에 위로 볼록한 함수를 그리면 되고, 또 (0,0)을 지나게끔 그려주었습니다. Sn의 필수조건이죠. 그리고 b는 14 이상의 자연수여야 한다는 것도 보이네요.
그 뒤 문제에 주어진 이 조건을 해석해야겠죠. n이 자연수일 때 늘 Sn 함숫값의 절댓값이 14보다 크려면 어떻게 되어야 할까요.
이차함수가 0을 지나는, 표시한 저 부분을 관찰해야겠다는 생각이 자연스레 들어야 합니다. 0을 지나는 곳과 왼쪽, 오른쪽으로 가장 가까이 있는 각 점이 함숫값의 크기가 14 이상이어야 합니다. 이 조건만 만족하면 이차함수 특성상 그 외에는 문제될 부분이 없습니다. 계속 절댓값이 증가할테니까요.
오른쪽 근을 정확히 구해야 할 필요성이 느껴집니다. Sn 식을 직접 써서 근을 b로 표현할 수도 있지만, 그건 좀 재미 없으니 다른 방식으로 가볼게요.
우선 an 식을 써보겠습니다.
이 등차수열은 일 때 0을 지납니다. 그럼 이차함수 Sn은 에서 최댓값을 가집니다.
(이유 모르겠으면 옆에 링크 게시물 확인! 위에 링크랑 같은 링크입니다. https://orbi.kr/00061847052 )
한편 Sn은 n=0일 때 근을 가지므로, 대칭성에 의해 나머지 한 근은
입니다. 이걸 보며 한 가지 정보를 더 끌어내야 합니다. 바로 b가 홀수라는 점입니다.
b가 짝수라면 나머지 한 근은 자연수가 될텐데요, 그런 일이 일어나서는 안 되겠죠. 함숫값 크기가 14이상이어야 한다는 조건을 만족하지 못할테니까요.
b가 홀수라는 걸 통해 또 다른 정보를 얻을 수 있습니다.
근과 양쪽으로 가장 가까운 점을 다음과 같이 표현할 수 있습니다. 한편 표시한 빨간 부분 길이는 1/2로 같습니다.
표시한 부분 길이가 같다는 정보를 통해 또 또 다른 정보를 얻을 수 있습니다.
바로 점 A와 점 B의 함숫값을 둘 다 조사해야 할 필요가 없다는 점입니다. 이차함수 특성상 축을 지난 이후로 점점 함숫값 변화폭이 커지는데요, 점 A부터 이차함수의 근까지의 변화량이 14보다 크다면, 이차함수의 근부터 점 B까지의 변화량은 당연히 14보다 클 것입니다. 후자가 항상 더 큰 값을 가져야 하기 때문이죠.
참고로 교육청에서 공개한 답지는 A, B 함숫값을 모두 조사했습니다. (자기들은 그렇게 안 풀어놓고 답지만 그렇게 써뒀을 확률이 큽니다. 답지를 작성할 때에는 작성자가 답지 쓰기 편한 방식으로 쓰는게 아니라, 공부하는 학생들을 위해 제대로 답지를 써야한다고 생각하는데... 교육청 답지를 보며 아쉬움을 느낄 떄가 많습니다. 이 문제도 그 중 하나네요.)
아까 an식을 써뒀으니 무민공식을 이용하여 Sn 식을 바로 써봅시다.
(무민공식 모른다면 옆에 링크 확인 https://orbi.kr/00061847052 )
점 A의 x좌표를 대입합니다. 그 결과가 14 이상이라고 부등식을 세워준 뒤에 풀면
이 나옵니다.
답은 4번입니다.
Sn 을 "이차함수답게" 해석해야 한다는게 구체적으로 어떤 느낌인지를 잘 보여준 문제라 생각합니다.
수열은 자유도가 상당히 높은 파트인데요, an 을 관찰하며 답을 낼 때도 있고, Sn을 관찰하며 답을 낼 때도 있고, 둘이 같이 보며 전개해가야 할 때도 있죠. 세 방식이 모두 어색하지 않아야 처음 보는 문항을 만났을 때 제대로 접근할 수 있을겁니다.
또 다른 기출문제를 볼게요.
얘도 조건에 따라 Sn을 완성하다보면 Sm=-162, S_2m= 162로 확정짓고 계산하면 끝이란 걸 알 수 있어요. an으로 돌아가지 않고 Sn의 이차함수적 성질에 따라 끝낼 수 있는겁니다.
도움이 되셨다면 좋아요 부탁드리고, 팔로우 해두시면 앞으로 올라오는 칼럼들과 자작문제를 놓치지 않고 확인하실 수 있습니다.
감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지원 인증 지원 미인증 비율이 어덯게 되나요? 반반?
-
금연 실패 11
깔깔 역시 사람은 니코틴이 필요해
-
난 아직 한번도 못봄 인터넷에서나 현실에서나 물론 현실에서는 그냥 친구가 없는거긴함
-
난수시로 갓지만 정시러들의 고충이 이렇게 클 줄이야
-
엘쥐베스트샵 가봤더니 전시 많이 되있네요 필기도 할수있나요???
-
이걸 어케지운담
-
님들 미친기분 미적분 시작편 사기엔 돈아까워서 그런데 이렇게 하는거 어케생각함? 10
미친기분 시작편 미적분 강좌보니가 칠판에 문제랑 몇년도꺼인지 다 나오는데 강좌...
-
기사앙.. 3
응..
-
본인 경기도 갓반고쪽 나왔는데 고등학교때 애들 대학 물어보니까 체감상 평균...
-
여자라 XY아니더라
-
씨발 일단 전여친이 있어야 보든 말든 할 텐데ㅋㅋ
-
추억은 가슴으로 한다.
-
전여친 보고싶다 0
나 기억은 나냐
-
미친듯이논다 독서실 짐도 빼고왔어
-
절대 개인이 이길 수 있는 구조가 아니니 현물로 가시는거 추천드립니다 왜 이길 수...
-
내신 화작인줄알았는데 언매신청돼있음 3월 개학 전까지 언매 한 바퀴는...
-
궁금하다노
-
오늘 드디어 주요변화평가 담당하시는 담당자분이랑 연결이 되어서 꽤 길게 이런 저런...
-
모솔특) 4
연애해본적없음
-
이랬던 때도 있었구나 10
ㅋㅋㅋㅋㅋ
-
지금부터 강민철t 강기분 들어가려고 하는데 인강민철 대신 데일리유대종을 볼까...
-
ㅇㅂㄱ 5
짐승이 돼.
-
후 0
D-2..
-
다시봐도 어렵네;; 솔직히 22수능지문들급인데
-
제가 현강을 많이 다니는 편인데,, 공통: 박종민 수1 특강: 강기원 미적분:...
-
오르비하기 2
행정복지센터 안에서
-
bmw랑 비슷??
-
특정당할까봐 뭐한데 집앞에 메디컬 하나 잇어서 ... 구냥 궁금
-
붙어도 약대 갈 거긴 한데 궁금해서요
-
ㅇㅇ
-
여기 탭 자체를 안막아놔서 메가 스마트탭 쓰려고 딴데 옮기려 합니다 어디가 낫나요
-
백분위로 2025 6모 미적:94 생1:91 지1:86 2025수능 미적:74...
-
건수 이화의 상지한조합까지똑같은데?997점에원서조합이똑같으며성적이 미인증이라전 좀...
-
연신내->강남역이에요
-
쪽지 ㄱㄱㄱ
-
저까지 추합 돌았으면 큰일날 뻔
-
어....
-
재수하려고 다 구매했다가, 원하던 대학에 추합이 되어서 판매합니다. 지구과학1 개념...
-
본인 지방러 중에서도 섬나라 거주중.. 목동 시대 합격 연락은 왔는데 장학X.....
-
이 단어 발음은 2
애로니어스임 이로니어스임? 들을때는 이로니어스같은데 흠
-
님들 스블 하고있는데 수2 미적중 어디에 더 집중할까요 4
수1은 삼각함수파트 하고있고 수2 미적은 진도가 더뎌서 조금은 하나에 집중하는게...
-
전문약 취급해 고발당한 한약사들, 무혐의ㆍ불송치 잇따라 0
https://www.newsmp.com/news/articleView.html?id...
-
기계공학과 진학하려는데 노트북 별도로 필요한가요? 아이패드는 있는데 패드용 키보드만 사도 될까요?
-
딴거 안했는데 얼굴로만 꼬셔지는걸 한번쯤은 해보고싶다
-
붙진 않앗겟지 수리논술 8문제중에 2문제 답씀 ㅋㅋ
-
카이 최초합 6
-
나도 이제 모르겠다! 예요
-
사실 공부는 1월 중반부터 이미 하고있었음 근데 내가 계속 몸이 안좋아서 잇올에서...
-
오노추 0
-
작년 정원 61명.. 54번까지 돎 이번 정원 56명... 본인 예비 44 돌까요..?
1빠임니다
1빠 ㄱㅁ
등차수열의 합을 이차함수의 그래프로 해석할 때, 연속적으로 그래프를 그리면 정의역을 실수 전체로 한정하는 실수가 가끔 있긴 해요, 그걸 헷갈리면 저 문제에서도 멘붕이 왔겠네요..
무밍추