칼럼7) 등차수열 합은 이차함수다
우선 기출 문제를 하나 보겠습니다.
(더 내리면 스포)
답은 4번입니다.
제가 전에 썼던 칼럼에서 등차수열 관련 학습할 내용을 다음과 같이 분류해놓은 적이 있는데요, 이 글은 세 번째
3. Sn 자체의 성질에 대한 칼럼입니다.
등차수열의 합은 결국 이차함수이기 때문에, 이차함수의 여러가지 성질을 이용해서 풀이를 해갈 수 있습니다.
<풀이>
지금 제가 알려드리는 방법은 일반적으로 알려진 풀이와 큰 흐름은 같으나, 디테일에서 차이가 납니다. 더 빠르게 답을 내실 수 있을거에요.
우선 Sn을 그려봐야겠죠.
공차가 음수이기 때문에 위로 볼록한 함수를 그리면 되고, 또 (0,0)을 지나게끔 그려주었습니다. Sn의 필수조건이죠. 그리고 b는 14 이상의 자연수여야 한다는 것도 보이네요.
그 뒤 문제에 주어진 이 조건을 해석해야겠죠. n이 자연수일 때 늘 Sn 함숫값의 절댓값이 14보다 크려면 어떻게 되어야 할까요.
이차함수가 0을 지나는, 표시한 저 부분을 관찰해야겠다는 생각이 자연스레 들어야 합니다. 0을 지나는 곳과 왼쪽, 오른쪽으로 가장 가까이 있는 각 점이 함숫값의 크기가 14 이상이어야 합니다. 이 조건만 만족하면 이차함수 특성상 그 외에는 문제될 부분이 없습니다. 계속 절댓값이 증가할테니까요.
오른쪽 근을 정확히 구해야 할 필요성이 느껴집니다. Sn 식을 직접 써서 근을 b로 표현할 수도 있지만, 그건 좀 재미 없으니 다른 방식으로 가볼게요.
우선 an 식을 써보겠습니다.
이 등차수열은
일 때 0을 지납니다. 그럼 이차함수 Sn은
에서 최댓값을 가집니다.
(이유 모르겠으면 옆에 링크 게시물 확인! 위에 링크랑 같은 링크입니다. https://orbi.kr/00061847052 )
한편 Sn은 n=0일 때 근을 가지므로, 대칭성에 의해 나머지 한 근은
입니다. 이걸 보며 한 가지 정보를 더 끌어내야 합니다. 바로 b가 홀수라는 점입니다.
b가 짝수라면 나머지 한 근은 자연수가 될텐데요, 그런 일이 일어나서는 안 되겠죠. 함숫값 크기가 14이상이어야 한다는 조건을 만족하지 못할테니까요.
b가 홀수라는 걸 통해 또 다른 정보를 얻을 수 있습니다.
근과 양쪽으로 가장 가까운 점을 다음과 같이 표현할 수 있습니다. 한편 표시한 빨간 부분 길이는 1/2로 같습니다.
표시한 부분 길이가 같다는 정보를 통해 또 또 다른 정보를 얻을 수 있습니다.바로 점 A와 점 B의 함숫값을 둘 다 조사해야 할 필요가 없다는 점입니다. 이차함수 특성상 축을 지난 이후로 점점 함숫값 변화폭이 커지는데요, 점 A부터 이차함수의 근까지의 변화량이 14보다 크다면, 이차함수의 근부터 점 B까지의 변화량은 당연히 14보다 클 것입니다. 후자가 항상 더 큰 값을 가져야 하기 때문이죠.
참고로 교육청에서 공개한 답지는 A, B 함숫값을 모두 조사했습니다. (자기들은 그렇게 안 풀어놓고 답지만 그렇게 써뒀을 확률이 큽니다. 답지를 작성할 때에는 작성자가 답지 쓰기 편한 방식으로 쓰는게 아니라, 공부하는 학생들을 위해 제대로 답지를 써야한다고 생각하는데... 교육청 답지를 보며 아쉬움을 느낄 떄가 많습니다. 이 문제도 그 중 하나네요.)
아까 an식을 써뒀으니 무민공식을 이용하여 Sn 식을 바로 써봅시다.
(무민공식 모른다면 옆에 링크 확인 https://orbi.kr/00061847052 )
점 A의 x좌표를 대입합니다. 그 결과가 14 이상이라고 부등식을 세워준 뒤에 풀면
이 나옵니다.
답은 4번입니다.
Sn 을 "이차함수답게" 해석해야 한다는게 구체적으로 어떤 느낌인지를 잘 보여준 문제라 생각합니다.
수열은 자유도가 상당히 높은 파트인데요, an 을 관찰하며 답을 낼 때도 있고, Sn을 관찰하며 답을 낼 때도 있고, 둘이 같이 보며 전개해가야 할 때도 있죠. 세 방식이 모두 어색하지 않아야 처음 보는 문항을 만났을 때 제대로 접근할 수 있을겁니다.
또 다른 기출문제를 볼게요.
얘도 조건에 따라 Sn을 완성하다보면 Sm=-162, S_2m= 162로 확정짓고 계산하면 끝이란 걸 알 수 있어요. an으로 돌아가지 않고 Sn의 이차함수적 성질에 따라 끝낼 수 있는겁니다.
도움이 되셨다면 좋아요 부탁드리고, 팔로우 해두시면 앞으로 올라오는 칼럼들과 자작문제를 놓치지 않고 확인하실 수 있습니다.
감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
성대 사범대 정시 내신반영 관련해서 질문좀 받아주실분 0
내신 2.초반 정도면 플러스요인일까요?
-
인강민철 0
작년꺼인데 1,2 건너뛰고 3부터 풀어도 문제없나?
-
우리반에 지체장애인이 있었음 얘가 수련회 숙소 저녁시간에 복도에서 알몸으로 온벽에...
-
뽀뽀하고 싶다 5
대상은 불특정다수
-
신발 빨아야 됨 따흐흑
-
이거생각보더 알콜많ㄴ가 라이트하다며
-
음슴체 쓰겠습니다 초등학교 5학년이었을거임 6학년 때에 코로나 터져서 단 한번도...
-
서강대 새터 1
혹시 서강대 추합하면 새터 못가나요..? 2/7일까지 참여비 납부로 되어있어서…
-
아직 안 나온거 맞아요?
-
08인데 고닉이라니 맙소사
-
혹시 생1 학습법 관련 칼럼 쓰면 보실 분 계신가요 4
올해 평가원, 교육청 다해서 7(45), 9(46)빼고 전부 만점인데
-
오르비이상해 1
-
일반고는 공부러 특성화고 안간 양아치 그리고 애석하게도 애매한애로 나뉘어 있다
-
국어 질문 0
20학년도 9월 장끼전에서 딱부리라는 새가 짐승이라는데 "인물'이 맞아요?
-
감사합니다.! 0
저번에 국어 질문한 사람인데 문학 한지문 버린다는 생각으로 하고 주저하지 말고...
-
선생님들은 학생 이야기로 노가리를 까신다 이건 진짜다
-
오르비 애들 공부 잘하는 척 선민의식 개쩔더니 겨우 세종대나 쓰는 거임?? 뭐 죄다...
-
평범함?
-
임마 점마 << 이거 쓰면 사람 너무 쥼 그래보임..
-
지금 뭔 메타에요 13
몇개월만이라 그론가 못따라가는중
-
이거 먼저 문장 먼저 해석해보고 강의 들어야하나요 아님 그냥 강의따라서 필기만 하면...
-
쪽지 주세요!!
-
소문은 빛보다 빠르다
-
23때 백분위 95 따리라 확통으로 틀까 고민되는데 한번도 공부 안해본 과목이라...
-
잠자기가 스펙이되는날이오길♡
-
나중에 시간이 날 때 봐야겠어
-
뻘글쓰기용님? 9
-
이거 병맛인데 왤케 재밌는겨…..
-
지역메타 하자 4
응응
-
ㄹㅇ
-
댓글로 싸우지 말고 평가원 점수 내기 하라고 아 ㅋㅋ
-
내신 꿀팁3 2
친구가 성적을 물어보면 절대 못봤다고 해라
-
토익공부하려는데 0
한동안 너무열심히 처놀아서 공부가 너모 안된다
-
지역 메타 9
저 어디 살 것 같은지 ㄱㄱ
-
퇴근하고십어요 0
흑흑
-
님들 키빼몸몇나와요 11
전 딱100임ㅋㅋ
-
안녕
-
https://orbi.kr/00071907531
-
안녕하세요 새벽입니다. 앞으로는 칼럼 더 열심히 써볼게요 ㅜㅜ. 요새 너무 바빠서...
-
지금은 헤어졌지만 22살~ 23살동안 여친한명 사귀었는데 진심으로 15번이상...
-
내신 꿀팁2 0
시험 때 문제 놔눠주고 손 올리라 할 때 그냥 앞페이지 대놓고 보고 계산해놔라...
-
왜지
-
사상가:롤스 0.경제 불평등은 최소수혜자에게'만' 이득이 되어야 정당화 될 수 있다...
-
언미사문지1로 1
갈 수 있는 의치가 어디어딘지 알려주실 수 있나용,,,
-
가능충 하면 됨 13
맛만 좋으면 그만이야
-
남자라서
-
내신 꿀팁 2
절대로 시험 벼락치기하고 몇등급이다 자랑하는 애들 말에 귀기울이지 않는다
-
나 전생이 두 개였구나 12
둘 다 보고 있는데 재밌음 저 때는 어려서 그런가 메인도 잘 보냈네
-
어디 함 마셔보자 편의점으로 출격
-
ㅈㄱㄴ
1빠임니다
1빠 ㄱㅁ
![](https://s3.orbi.kr/data/emoticons/oribi_animated/034.gif)
또 오셨네요! 반가워요등차수열의 합을 이차함수의 그래프로 해석할 때, 연속적으로 그래프를 그리면 정의역을 실수 전체로 한정하는 실수가 가끔 있긴 해요, 그걸 헷갈리면 저 문제에서도 멘붕이 왔겠네요..
![](https://s3.orbi.kr/data/emoticons/dangi/029.png)
오랜만에 뵙네요무밍추