[이대은T] 매주 한 문제를 공개합니다.
안녕하세요 수학강사 이대은입니다.
여러분들은 수학을 푼다와 공부한다가 같다고 생각하시나요 다르다고 생각하시나요?
저는 만약 모의고사를 응시하거나 수능을 볼 때는 푼다가 맞지만 모의고사 후에 피드백을 하시거나 자습시간에 수학문제를 푸는 경우 공부한다가 되어야 한다고 생각합니다.
다시 말해서 시험을 볼 때 수학문제를 다루는 방법과 따로 공부할 때 다루는 방법이 만약 같다면 공부를 한다고 생각하지만 시간만 버리는 행위일 가능성이 높다는 것이죠!
앞으로 제가 오르비학원에서 수업한 문제 중 매주 한 문제씩 글을 적어볼테니 여러분들도 짧은 시간 내서 같이 풀어보고 제가 전달하는 내용을 얻어가시길 바랍니다!
이 영상은 글을 먼저 읽으시고 보시는 것을 추천할게요!
먼저 기출문제인 한 문제를 보겠습니다. 어렵지 않은 문제이니 한 번 풀어보세요!
답을 구하셨나요?
설명에 앞서서 만약 여러분들이 공부 중에 이 문제를 접했다면 푼 이후에 뭘 따로 고민할까요? 아니면 그냥 다음 문제를 풀러 갈까요?
저는 대부분의 학생들이 그냥 다음 문제로 넘어간다고 봅니다...
만약 답을 구하지 못했다면 해설지를 보거나 질문을 통해 풀이를 듣고 이해하고 넘어가겠죠..
근데 전 문제가 쉽고 어렵고, 풀리고 안 풀리고를 떠나서 어떤 문제든 얻어가는 점이 있어야 한다고 생각해요.
우선 이 문제의 풀이입니다.
그런데 이 풀이를 이미 알거나 새로 알았다고 해서 성적향상에 그렇게 크게 도움이 되지 않습니다.
그럼 도대체 어떻게 공부해야 성적향상으로 이어질까요?
우선 이 문제를 통해 얻어갈 수 있는 내용을 정리해보겠습니다.
1. 분수식의 극한값이 주어지면 어떻게 활용할 것인가
2. 다항함수를 구하는 문제는 풀이방향을 어떻게 잡을 것인가
3. 주어진 조건의 형태를 보고 삼차함수가 갖는 대칭성은 어떻게 활용할 것인가
이렇게 간단한 문제에서도 얻어갈 내용이 있습니다.
이 질문들에 대한 답을 스스로 한 번 구해보시고 위의 영상에서 제가한 설명을 보시면 도움이 될 거에요~!
만약 혼자 학습했을 때 문제가 어렵고, 쉽고를 떠나서 뭔가 얻어가는게 없다면 아마 고생만 하고 얻어가는 것은 없는 공부를 하고 있을 가능성이 높아요..
문제를 통해 얻은 지식을 정리하고 암기하여 같은 유형의 다른 문제에도 적용을 할 수 있어야 성적향상으로 이어집니다.
실제로 이 방식으로 학생들을 가르쳐 2023학년도 수능에서 원래 20, 30점대이던 학생들을 미적분 1등급을 받은 학생들이 있었습니다.
위에서 언급한 얻어갈 내용들은 자주 등장하는 조건들이니 위의 영상을 보시고 보다 확실한 이해를 통해 앞으로 적용이 가능하면 좋겠습니다!
(보셨다면 좋아요&구독 좀 부탁드릴게요..ㅎㅎ)
아 그리고!
1/24 도형과 관련된 무료특강이 있습니다. 관심이 있으시다면 아래의 링크로 신청해서 꼭 들어보세요~!
그리고 이건 제가 주말에 진행하는 단과인 점 링크입니다.
(약간 부끄럽네요...ㅎㅎ)
수험생 여러분들 모두 새해 복 많이 받으시고, 2024학년도 수능에서 모든 복 몰빵하셨으면 좋겠네요!!
다들 화이팅!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
올해 중대 추합 0
공대 기준 23학년도만큼 돌까요?
-
너는의대가라 7
넵
-
저런 알파메일들과 같은 학교에..
-
어디가셨어요 폭동 일어나는 중임
-
아니 이제는 커뮤까지 뺏어가냐… 커뮤는 도태된 사람을 위한 걸로 남겨둬라….
-
이륙해버렸뇨 5
오르비공식존못남등극
-
듣자ㅇㅇ 자러가봄 언젠간 한번 또 오겠슴..... 요샌 옯할일이 진짜 없는듯
-
내신 7등급인데 2
그럼 올해가 막차인가
-
경한이랑 고민하고싶다
-
췍디스아웃 19
암더코리안탑클래스
-
걍 순수하게 존나 멋있네
-
너무나도 분통스럽다!!!!!
-
피방에 박혀서 맛있는거 잔뜩머거야지
-
약간 2,3월 느낌
-
ㅋㅋ저새낀보단 내가 낫지 이러면서 자위하는데 자위할수가없음 하….
-
와 27수능을 끝으로 "N수"란 말도 없어지겠네,,, 22
현실에선 몰라도 그래도 오르비에선 N수생들과 N수란 단어들이 꽤많이보였는데, 이제...
-
제가 9수를 해서 검사가 되는 수 밖에 없습니다...
-
후
-
나같은 개 씹 하타치는 맞는 위치가 있고
-
난 광대형님들의 안면근육 묘기가 보고 싶다고 새르비 뛰고 싶어서 잠도 안 자고 왔더니만 이게 뭐야
-
ㅇㅇ 미리 예고했음
-
아오 펑크시치ㅋㅋ
-
ㅇㅈ 멈춰주세요 0
슬슬 자야..
-
공부도잘하고 외모도뛰어나고
-
제가 ㄹㅈㄷㄱㅁ쳐드릴게요 제발 인증 좀 해즈세요 저 미칠거같아요
-
한림의 연원의 경북의 전남의 순천향의 단국의 어떤 순서로 가야하나요? 이유도 같이 부탁ㅜㅜ
-
난 이거 지금나오는 ㅇㅈ메타에대해 이해를 못하겠음 그러니깐 이게 어케된거임 상황설명좀 부탁함
-
한남평균 4
보다아래입니다
-
지금 내가 다니는 과가 작년에 정시 10명 모집인가 그랬음 그랬는데 올해 학교에서...
-
주현씨 미안해요..
-
계엄은 4
어쩌면 오늘 일어났어야하지 않을까 싶은 밤이다
-
잘생긴 형아들과 예쁜 누나들을 대령하라
-
정시는 처음이라 잘 몰라요..
-
아니 7ㅐ추 속도 뭔데 13
약간 슬?프네요
-
후으으
-
제발 그만
-
사문 고2때 불후의 명강 듣고 도표특강들었는디 겨울방학 때 뭐해야될까요?
-
추어탕 2
한그릇 먹고 싶구나
-
나쁜놈들
-
여권사진 ㅇㅈ 27
ㅇㅈ 재밌ㄴㅔ ㅋㅋㅋㅋ
-
누군가는 0
진실을 말해줘야함 ㄹㅇ
-
1년뒤 이맘때엔 10
메디컬 뱃지를 달고있기를
-
내ㅇㅈ본사람들은다알잖아
-
ㅠㅠㅠ
-
ㅇㅈ 안 하고 공짜로 기분 좋을래
-
보쌈해버릴거야
-
여기도태남녀들의 집합소여서 나도 편했는데 이제 불편해지네
-
다 꺼1져 18
내가 신이다.
-
인생쓰다..
-
잘생긴 사람이랑 예쁜 사람들 리스트 완성 이제 쪽지보내야지 피할 수 없으면 즐긴다 우웅
미계 형태로 바꾸면 미계가 같으니 변곡점이 1,-1 정중앙인 0이다로 쓰는거 아닌가요? 아마 기억이 맞다면 8번 문제였던거같기도하는데 , 과외했을 때도 애들한테 그냥 푸는게 다가 아니고 이런 문제에서도 충분히 교훈을 얻을 수 있다!라는 대표적인 썻던 문제로 기억하네요
오 맞습니다!!
풀이가 끝이 아닌 내용정리까지 해주셨으니 학생도 많은 도움을 받았을 것 같네요 :)
그냥 우선 (x^2-1)을 인수로 갖고 x를 곱하면 조건을 만족하게 되는듯
네네 극한식 해석만 끝나도 바로 다항함수를 잡을 수 있죠!
그 후에 최고차항 계수만 구하시면 간단하게 풀 수 있는 문제입니다~