[Team PPL 칼럼 64호] 3월까지 할 게 얼마나 많은데!
안녕하세요 TEAM PPL의 모의고사 전문팀 'Team 수하기‘의 팀장을 맡고있는 너만의수학 홍승혁입니다.
저는 오늘 2023학년도 수능을 돌이켜보며, 수험생 여러분이 겨울이 지나기 전에
꼭 거쳐가야 하는 기출, 수능특강을 어떻게 공부해야하는지에 대한 말씀을 드리려합니다.
다만 저희 칼럼 60호에 기출의 중요성에 대하여 언급한 부분이 있습니다.
=> https://orbi.kr/00059321983
이 글을 읽고 와주시면 이번엔 어떻게 기출을 다뤄야 하는지에 대해서 더욱 이해가 깊어지실 수 있을거라 생각됩니다.
1. 또, 또, 또! (유형의 반복을 대처하는 방법)
3점 문항들은 제치고 4점 문항들을 중점적으로 보겠습니다.
아래 문항은 2023학년도 수능 10번 입니다.
다음은 2011년 10월 고3 가형 29번입니다.
잘 보셨나요? 문제에 나온 식은 다르지만 둘러싸인 부분의 넓이를 구한다는 풀이과정이 완벽하게 똑같습니다.
이미 10년도 더 된 문항의 유형과 완벽하게 똑같은 문항이 나오는 상황에서 우리는 기출에 대한 확실한 복습, 공부가 충분하다면 수능현장에서도 유사성을 충분히 찾을 수 있습니다.
이와 비슷한 문항으로 2011년 7월 나형 26번, 2019년 7월 나형 27번 등이 있습니다.
이렇게 비슷한 문항들을 집중적으로 다뤄서 해당 유형을 마스터한 후 다른 문항들을 도전해보시는걸 추천합니다.
혹은 이렇게 비슷한 유형을 모아놓은 문제집을 사서 푸시면 됩니다.
2. 본 적 없는 함수인데? (믿고 찍는 번호)
위 문항은 23학년도 수능 14번입니다. 쉽지 않았던 문제지만 여기서 중요한건 다항함수를 정확하게 주지 않았던 것과 함수가 까지 나온 것까지, 시험장에선 당황할만한 요소가 너무 많았던 문제였고 심지어 답도 ㄱ 이었습니다.
선 넘는 문제일까요? 아뇨! 우리가 ’믿고 찍는 5번‘ 라는 말이 있듯이 선지를 제대로 확인하지 않고 문항을 푸는 습관에 익숙해져 있어서 그런 느낌이 들 수도 있습니다. 기출에서 합답형 문제를 푸는 수험생분들은 ㄱ, ㄴ, ㄷ 선지를 다 풀어보는 습관을 길러야합니다.
합답형의 경우에는 문항을 풀 때 선지가 왜 맞고 틀리는지에 대한 이유를 정확하게 설명하는 연습을 하시고, 시중에 있는 해설등을 비교하며 자신의 설명이 맞았는지 확인하는 과정을 거쳐야합니다.
3. 쓸모없는 개념은 없다.
23학년도 수능 22번 문항입니다. 이 문항의 풀이 중 평균변화율로 접근하여 문항을 해석하는 풀이가 풀이 중 하나로 언급되고 있는데요. 평균변화율의 경우에는 22학년도 수능에서는 안나왔고 그 전에도 주류로는 다뤄지지 않았던 개념입니다.
하지만 교과서에는 빠지지 않았던 필수개념이고, 개념에 대한 깊은 이해가 있어야 이 문제를 풀 수 있었던만큼 여러분께선 지금까지 배웠던 개념에 대한 복습과 그 개념을 이용한 심화문제를 꾸준하게 연습하셔야합니다.
이런 상황에서는 같은 개념을 쓰지만 난이도가 다른 여러 문항을 준비하여 차근차근 문제를 풀어야합니다.
4. 수능특강은 어떻게...?
3번까지는 기출에 대한 분석, 접근법, 이용방법 등을 알려드렸습니다. 이렇게 기출을 공부하시다보면 대부분의 경우에 중간에 수능특강의 판매시작이 개시됩니다.
하지만 우리가 연계교재라해서 수능특강을 바로 푸는것이 옳은 것 일까요?
상황에 따라 다르겠지만, 기출에 대한 간단한 유형화도 안되었고 개념에 대한 복습도 안되어있는 상태라면 수능특강을 당장에 푸는 것은 반대합니다.
수능특강의 경우 연습문제의 Level 1, 2, 3 단계를 나눠진 문항 구성때문에 유형화가 된 학생에게는 최적의 효과를 가져다주고 아닌 학생들에게는 오히려 불이익을 가져다주는 상황이 발생합니다.
그래서 단과학원등에서 수능특강을 수업 때 진행하는 경우에 level 2 까지만 풀고 책을 한번 다 푼 다음,
남은 문항들을 하나하나 자세하게 시간들여서 푸는 방법을 채택하고 있으니 그 방법도 고려해보시길 바랍니다.
만약 그게 아니라면 혹은 내신 때문에 반드시 봐야하는 경우가 아니라면, 기출에 대한 공부를 하시며 실력을 충분히 쌓고나서 수능특강을 푸는 것을 추천드립니다.
부디 여러분의 수험생활의 노력이 결실을 맺기를 바라며
n수생분들은 꾸준하게 기출, 개념을 복습하시고, 고3 수험생분들께선 3월 모평전까지는 최대한 기출에 대한 유형화와 심화문제를 많이 푸셨으면 좋겠습니다.
긴 글 읽어주셔서 감사드리고, 읽으시는 분들께 도움되기를 간절히 바랍니다.
칼럼 제작 | Team 수하기
제작 일자 | 2022.12.25
Team PPL Insatagram |@ppl_premium
*문의 : 오르비 혹은 인스타그램 DM
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
통합과학 문제집인데 종이면에 수직으로 들어가는 방향의 균일한 자기장이라는 게 이해가...
-
저녁에 샤워하고 자면 뭐 해 아침에 냄새나는데 좀 씻으면 안되나
-
군대가기전에 금테 달아보고 싶은데 뭔가가 뭔가네
-
재수.삼수 때 52~53이었는데 수능 끝나고 지금 49됨.. 계속 빠지는 중인데...
-
뭔가 익숙하다
-
어디감
-
후회가 덜남음 모든 선택에는 득/실이 있을 수 밖에..
-
심각함수 도형파트는 좀 정리하고 암기하는게 중요함뇨 6
본인 원주각도 모르던베이스에서 출발했는데 무지성으로 뭐 이건가? 때려맞추기보다는...
-
그냥 생각난건데 1
연예계가 정치계 못지않게 동물의왕국일듯
-
매우큰오댕이 0
-
우리학교가 2학년 2학기에 미적분함. 그리고 내일 세특 채우기용으로 점수는 그냥...
-
ebs야 믿는다 0
제발
-
아까 버스 앞자리에 머리떡진채 구리구리한 냄새를 풍기며 대놓고 애니를 보는 누군가가...
-
1. 제로콜라 집에 2박스를 시켜놨어요 왜냐하면 이것은 생명수이기 때문입니다 이견은...
-
머뇨이
-
화1 ㄷ 지1 7
예비고3이고 메디컬 지망인데 화1은 하프모고 실모 벅벅중이고 지1은 내신도 안했고...
-
세상이싫다 2
히키코모리가꿈임..
-
흑흑
-
계속 6개씩 틀려요… 13,14,15랑 20,21,22 틀리는데 수1은...
-
중립했다가 1단햇다가 2단하고 3단하고 다시 중립하거 미칠거같아요
-
밥먹으면 밥먹는다고 글쓰고 애니보면 애니본다고 글쓰고 자면 잔다고 글쓰고 여행가면 여행간다고 글쓰고
-
올수능 미적 72점(노찍맞)인데 1년 더하면 92점이상 받을수 있을까요..? 3
수리논술러라 수학만 공부할겁니다!
-
나도 밥먹으면서 무물보 11
-
어떡하지 4
오버워치가 너무재밌는데
-
베란다 사진 4
투척
-
세이버 예쁨 7
-
결과도 3과목 한번에 바꾸고 1년차에 이정도면 뭐 나쁘지 않았다 생각하고 무엇보다...
-
사탐 선택 0
지금 대성패스 끊은 상태고 국수영 다 대성선생님 커리 탈거같은데 사탐 선택이 너무...
-
눈이 안 와.. 3
근데 오면 나도 내일 제설해야하긴 해
-
맞팔구구 8
-
부산국밥! 6
-
맞팔9 12
잡담태그 잘 달아여 금테까지 약 20명
-
안되면 Team(x) Solo(o) 언기물2지2 2트 렛츠고 딱히 인강은 모르겠고 벅벅벅 원툴
-
우흥?!
-
재수강할 생각하니 좆같고 응
-
안녕하세요 사문 컨텐츠 추천하러 왔습니다… 저에겐 구새주같은 컨텐츠 입니다 반수...
-
고정->메가+대성 73만 더프+6,9모 1~20만 사이 매달 식비 점심저녁,...
-
말투며 목소리며 빅뱅 태양하고 개똑이네
-
국장 전적대학점은 상관없죠?
-
모르는분인데 죽고싶다 뉘앙스로 글 썼는데 따로 대화하자고 하시고 안주셔도 된다...
-
전자 해보신분있나요 둘중에 하나를 무조건 선택해야하는데 경험이나 그런거 있으신분은...
-
혹시 기숙학원 안에서 텔레그램 으로 pdf사용 가능한가요...? 어느학원이신지...
-
[고1~고2 내신대비 자료 공유] 고1 국어, 고2 문학, 언매 분석 문제 배포 0
안녕하세요 나무아카데미입니다.2025학년도 고1~고2 내신대비를 위해 고1 국어,...
첫번째 댓글의 주인공이 되어보세요.