변곡점의 정의가 뭔가요?
게시글 주소: https://orbi.kr/0005884653
변곡점의 정의가 뭔지모르겠고
왜 미분두번했을때 0이되는지 모르겠어요ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
언제 올리는게 가장 많이볼까요 수특 레벨3 곱셈정리까지+확통 필수 실전개념예제...
-
神戸
-
오르비 1
-
그냥 노가다죠? 애들 대부분은 다 맞췄더라구요
-
내가 진짜 여자 겠음?
-
ㅈㄱㄴ? 윤 탄핵된 이시점에 의뱃분들 생각이 어떨까 궁금하네요
-
대학 안걸고 재수하니까 인생이 단조로운것 같으면서도 굵직한 사건들도 많음 세상...
-
젼 기만자가 아니라 11
감자입니다
-
사실 얼굴 잘 못외워서 욕 많이먹음
-
스카이나 메디컬뱃 단 알파메일들의 인증글을 볼 때마다 혈압 오름
-
정신의병
-
ㅇ
-
메가 칼럼에 재수해서 23242 받고 수시로 수의대가서 칼럼쓰는사람있던데 10
뭔가뭔가임 수시 준비하는 사람들한테는 도움되겠지만 정시한테는 도움 안되는데 하나하나...
-
코난의 벽 재의요구권은 코난 탐정이죠
-
누구덕에 술맛이 좋네요
-
다뒤진 오르비에 장작 넣어주는 리치킹인듯
-
으흥~
-
딥피드 점령당함 2
너가갤주해라
-
여르비였음? 13
여자 조심해야겠다
-
+1을 해야겠어
-
저때 인설의 이상급에서 수능보던 사람 내가 아는 케이스만 2-30개는 됐었는데...
-
다들 자러 가라
-
한 줄에 천억 뜨는 걸 볼 수 있을까,,
-
권당 15 22 30번급 문항 24문항(전체 50문항) 문항 퀄리티 ㅆㅅㅌㅊ 지금...
-
아차! 내란견들에게 뻐큐하는 형식이햄이었어요!
-
꼭 약속 전날밤에 뭐가 터짐
-
전쟁을 일으킨 놈들을 말야.
-
엄
-
이제 한평이냐? 4
왜 바꿈?
-
공팀지수가 4임 ㅋㅋ 내가 취직하기전에 마지막기회같은데
-
아 인생
-
이동준 리엑트 파이널/일반 볼텍스 수 1 2 미적 서킷 20-48회차 빡모 어싸...
-
마그네틱 끝까지 듣기 성공 ptsd 극복이냐
-
공통은 무난무난하게 하는데 미적분이 N제풀때마다 뭔가 마무리가 안되네요 이거...
-
자러가겠습미다.. 12
자러가라고하네요ㅠ 거역할수가읎다
-
레어 막 풀릴 시절에 12
누가 내 하니 레어 계속 가져갔었는데ㅡㅡ
-
부끄럽다 친구야
-
벌써부터 보이는건 기분탓일까
-
입학이 곧 처단대상인 학과인데 ㅉㅉ
-
처음엔 나도 좀 예쁜 레어 멋진 레어 가지고 싶었어 4
연달아서 여섯번 물리니깐 그냥 폭주한거지 정작 웃긴 건 물렸던 레어는 다 팔렸다는 거임
-
학교인증만 하고 탈퇴해야지
-
요즘으로 치면 서바 이감 기깔나게 푸는거로 어맛 저 낭군 멋져 이ㅈ랄하는거 아님?
-
개콘 공채 소속이냐? 19
둘이서 뭐하노 ㅋㅋㅋㅋㅋ 일단 이젠진짜 점마는 공연성은 성립해도 특정성 부터가...
-
신청 안되죠??ㅠ 8월에 고졸따는데 6평은 학원에서도 못 보는 거 맞나요? 혹시...
-
오늘 독재에서 귀차나서 안외운 영어단어..
-
레몬멜론쿠키레몬멜론쿠키 쿠키!
-
이어폰 어디갔지 0
집에 있다고 뜨는데 ㅡㅡ
-
내년 현역은 잠재적 재수때문에 확통을 더 할거같다
도함수의 극점...
변곡점은 삼차함수에만있나요?
아니요...
미분두번했을때0되는점이 왜변곡점인가요??
원래 도함수의 증감이 바뀌는지점이에요
아 그렇군요!! 그럼 삼차함수는 변곡점을 기준으로 항상대칭인가요?
생각해보시면 미분하면 2차함수가 나오고 2차함수는 대칭축을 기준으로 항상대칭이니 증감이 같잗아요 완전히 그래서 당연히 대칭이죠
좀 알것같아요 감사합니다~
그래프의 오목 볼록 즉 미분계수의 변화율을 따지는 것 아닌가요 오목에서 볼록으로 바뀔때 증가함수하면 원함수의 변곡점 주위의 미분계수가 변곡점보다 작잖아요 그러니까 미분계수의 미분 이계도함수의 극값일 때 변곡점 인거 같은데요 그냥 직관적인 판단으로는. 그러니까 당연히 0인거요
이계도함수의 극값이아니라 부호변화점입니다
아 말실수 ㅋㅋㅋ 죄송 자기전에써서 경황이없었네요 도함수극점
미분계수의 변화?가바뀌는부분은 극값아닌가요? 변곡점은무슨차인가요?
변곡점의 정의가 도함수의증감이 변화되는 지점이에요
도함수의 극점이 변곡점 맞아요.
극값은 극점의 y좌표 말하는거에요.
직관적으로 이해 시켜드리자면 변곡점이 위로 볼록에서 아래로 볼록으로, 또는 그 반대로 함수 모양이 바뀌는 점이기도 하거든요.
위로 볼록한 함수를 그려보시면 도함수가 점점 감소하는 걸 볼 수 있고, 아래로 볼록한 함수를 그리면 도함수가 점점 증가하는 걸 보실 수 있어요. 그럼 각각 이계도함수가 전자는 음수이고 후자는 양수라는 이야기죠.
이계도함수의 부호가 바뀌는 점(=f''(x)=0인 점)에서 위/아래볼록이 바뀌고, 이를 변곡점이라고 합니다.
이제 교과서 변곡점 파트를 한번 주의 깊게 읽어보시고, 위/아래 볼록 파트를 읽어보시고, 다시 변곡점 파트를 읽으면서 의미를 머릿속에서 재구성 하세요
사실 제가 문과라서 변곡점파트가 교과서에 없어요ㅠㅠ 아무튼 이해가됐어요 감사합니다~^^
참고로 도함수 부호가 바뀌어도 그 점에서 함수 자체가 정의되지 않으면 (y=1/x는 변곡점을 가지지 않습니다) 변곡점 아니에여
변곡점은 도함수로 정의되는게 아니에요. 극값이 도함수로 정의되지 않는거랑 마찬가지에요
변곡점의 정확한 정의는 볼록성이 변하는 점입니다.
윗분 말이 맞습니다. 오목성이 바뀌는 거에요. 아래로 오목에서 위로 오목으로 변하는 것과 같은 거에요. 그 점에서 미분이 가능하면 이계도 함수로 판단하면 되지만 그렇지 않은 경우에도 변곡점이 있을 수 있습니다