수학 퀴즈 하나 내볼게요 (수하, 수2)
일대일 대응 함수 f(x)와 g(x)에 대해
이 성립한다.
의 값을 구하시오.
+ 풀이 과정도 보여주면 더 좋습니다.
+ 위 성질을 만족하는 f(x) 와 g(x)의 예시를 아는 사람은 댓 ㄱ
(대학 미적분학 배우면 뭔가가 보일 수도 있습니다)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이제 3개년 기출 끝내고 실모 들어가려는데 배울게 많은 실모였으면 좋겠음. 근데...
-
clothing20snu 대성 커피 먹구가 ~~ ⸝⸝> ̫ <⸝⸝ 0
있잖아, 지금 2026 19패스 구매하고, 내 ID를 입력하면 너도, 나도 각각...
-
굳모닝 2
-
문학 시간 어케줄임 9모 10모처럼나오면 100맞긴함
-
히카 시즌 추천 0
작수정도 난이도로 시즌 2개 정도만 추천해주세요! 평가원 기준 미적 1~2진동해요.
-
도로 일방통행돼서 늦엇잖아 ㅅㅂ 넌 지나가다 새똥이나 맞아라
-
샤프심이 없음 ㅅㅂ
-
11월달이에요 0
다들 화이팅
-
오르비에 처음으로 고3 수능직전 봉투모의고사 자료를 제작하여 올립니다. 안녕하세요,...
-
10모기준 높1 3컷 2 50 47 나왔는데 성균관대 끝자락이라도 가능할까.....
-
얼버기 0
-
아 더프 늦을듯 1
늦어도 입장 시켜줌? 8시 10분까진데 20분 넘을거 같은데.... 아오 똥시치..
-
ㄷ
-
국어 풀 때 지문에 표시를 거의 안 해서 그냥 1지문 풀고 바로 마킹하는 식으로...
-
이퀄싫어
-
오늘 아침은 떡 2
(야한말아님)
-
타임어택 지리네 실모가 젤 중요한거같음
-
아틀란티스타고 이쓴ㄴ 건지 택시 타고 있는 건지 구별이 안 감 눈감으면 아틀란티스 맞는 거 같은데
-
13일은 좀 7
;;;
-
왜 시대는 수능 3일전에 월례를보는거지.. 직전에 감 끌어올리면 오히려 좋은건가...
-
하지만 난 대구광역시교육청에서 주관하는 모의고사를 친다 쿠후후
-
??
-
23 24 전부 수능에서 한 7~8점정도 높네 ㄷㄷ
-
오예스로 바꾸니까 녹는다.. 비싼 이유가 있네
-
간쓸개 이감 세트 시즌 5-4 까지 밖에 못했는데 시간이 너무 없네요 ㅠㅠㅠ 남은게...
-
보이루 0
다들보이루 이제 11월이네요 힘냅시다
-
안치면 후회하려나
-
더프 신청했으면 일요일날 롤드컵 보느라 5시간도 못자고 쳤겠네
-
괜시리 좀 쫄리네요 이번수능 = 병무청이랑 맞다이라서 최근 3년간 중에 리스크가...
-
김민주단들 화이팅!
-
☆☆ 대성 19패스 phil0413 추천 부탁드려요 ㅠㅠ 메가커피 1만원권 같이 받아요! 0
추천 아이디 입력하면 메가커피 1만원권 같이 받을 수 있대요 !! 함께 2026...
-
기다려라 E퀄아 형이 찢어줄게
-
어제 ㄹㅇ 힘들었다
-
결국 승리할 자 2
오늘도 파이팅.
-
파운데이션 -> 킥오프-> 뉴분감 이렇게 하려고 하는데 킥오프하고 바로...
-
얼버기 4
-
평범한 고2 학생입니다. 고점은 모의고사 100점, 수능 백분위...
-
몸이 으슬으슬함 이거 아프다는 신호인가 ㅈ됐다
-
헉 여신 이다
-
왜일~까
-
접수 마지막날 새벽까지 누워서 각재다 원서 넣던 게 엊그제 같은데
-
면접 가보자 0
끝장내고 와야겠다
-
고등학교 과정과 비슷한게 많나요
-
이 씨
-
어제 10시 반에 자서 지금 일어남 캬하~.~ 밤 샌 보람이 있다 낮밤 잘바꿨네
정의역이 정확히 명시가 안되어있는데 그냥 실수전체집합으로 잡아요?
아뇨 히히
혹시 답이 0인가요?
네 맞아요
f^-1의 존재성 밝히려면 공역이나 치역도 잡아줘야하는데 그냥 존재하겠거니하고 진행하자면
f(c)=1인 c가 존재한다고 하자.
문제에 주어진 등식에 대입하면, g(c)=0이다.
이때 역함수의 정의를 상기하면 f^-1(1)=c 이므로
구하고자 하는 값은 0이다.
구웃구웃
조금은 아쉬운 지점이 그냥 f를 전단사함수라 주는게 어떨까 싶네요
아 일대일 함수라고 잘못썼네 ㅠㅠ 공부한지 쫌 오래돼서 실수
당직 언제 서세요
그런거 물어보지마세여 ㅠㅠ
낄낄
등식의 양변에 f^-1를 대입하면 x^2-g(f^-1(x))=1 x=1 대입하면 0 이런 느낌인가요
네 그거도 완전 좋은 풀이예요
역함수 논리로 딱 풀리네용
함수는 그냥 f(x)=x, g(x)=sqrt(x^2 -1) 정도 잡으면 되려나요
네 사실 구간만 일대일대응 되게 좁게 잡으면 아무거나 다 되긴 해요
제가 의도했던 거는 f(x)=secx, g(x)=tanx 였어요 시컨트는 구간 (0,pi/2), 탄젠트는 구간 (-pi/2,pi/2) 를 정의역으로 하면 일대일 대응이 되고, 삼각함수 제곱관계 식을 만족합니다
예시 쌍곡함수 있습니다
정확히보셨군요