칼럼)미분방정식을 이용해서 함수를 쉽게 구해보자.
맨날 여기서 공대오지마라 의치한가라같은 뻘글하고 떡밥글만
쓴 사람이지만 이번에는 그래도 지금까지 내가 썼던 글 중에서
어쩌면 가장 유용한 글을 써보고자 합니다.
우선 이 글을 쓰기 전에 미분방정식 관련 좋은 칼럼이 있어서
링크 첨부합니다.
지금 쓰는 칼럼같은 경우
내용이 매우 어려울 수 있으므로 깊은 이해보다는 이런게 있다라는 수단의
수준으로만 설명하고자 합니다. 또한 이 방법은 최후의 수단이며
고등 교과 수준으로 풀어내는 것이 가장 중요합니다.
아래와 같은 미분방정식이 있습니다. 이는 연세대학교 미래캠퍼스
2022년 논술문제에서 따왔습니다.
이것을 한번 풀어보죠.
이렇게 정리하고 양변 동시에 적분한다면
이라는 결과가 나오네요. 그리고 f(0)=1/2라는 경계조건이 있으므로 C=1/2이네요.
이 되네요.
근데 이거 갑자기 못떠오를 수도 있잖아요? 그럴때는 어떻게 풀어야 할까요?
그럴 경우에 도움이 되는 방법이 있습니다.
우선 이 방정식을 봅시다.
이 방정식 푸는 법은 다들 아실 겁니다. 저 링크를 타도 푸는 방법이 나옵니다만 알려드리자면
와 같이 정리될 것이고 여기서 양변을 적분해 줍시다. 적분상수에 유의합시다. 매우 중요합니다.
와 같이 정리가 되네요. e의 C제곱을 간단하게 A라고 나타냈습니다.
일단 주어진 방정식을 풀기 위한 첫 번째 과정이 끝났습니다.
그런데 이거 구해서 뭣에다가 써먹냐고요?
나중에 다시 설명해 드리겠으니 계속 따라와 주시면 되겠습니다.
이젠 아래 방정식을 다시 한 번 살펴봅시다.
여기서 f(x)가 삼각함수와 지수함수의 곱의 꼴로 이루어져 있어야
대입하고 정리해볼 때 우변처럼 나올 수 있다는 생각을 한번 해봅시다.
이것을 미정계수법이라고 하는데 사실 엄밀하다기 보다는 매우 직관적인 방법입니다.
위의 말을 간단하게 수식으로 표현해 보았습니다.
이제는 이 f(x)를 직접 대입해서 항등식을 세워 봅시다.
이런 항등식이 나오게 된다는 것을 직접 대입함으로써 확인할 수 있습니다.
여기서 이젠 a와 b의 값을 구하게 된다면 각각 1, 0이 나올 것입니다.
그러면 이젠 f(x)가 나오겠죠.
f(x)를 구했더니 저런 꼴이 나오네요. 저걸 다시 방정식에다가 대입해 봤을때 좌변과 우변이 서로
같아질 것입니다.
그렇다면 우리는 이 방정식을 풀었다고 할 수 있을까요?
답은 그렇지 않습니다. 왜냐하면 이렇게 구한 저 f(x)가 저 방정식의 유일한 해라고 단정할 수가 없기 때문입니다.
그러면 우리는 저 방정식의 해를 어떻게 표현해야 할까요?
맨 처음에 풀었던 방정식이 이에 대해서 놀라운 정답을 제공합니다.
이 방정식을 다시 한번 보시죠. 주어진 미분방정식에다가 대입해 봅시다. 그러면 좌변이 0이 될 것입니다.
그렇기에 Ae^x라는 항은 추가를 하더라도 방정식의 결과에 아무런 영향을 주지 않겠네요. 이러한 것을 우리는
'일반해' 라고 하기로 하였습니다.
그러면 f(x)를 이렇게 표현해도 방정식을 만족하겠네요.
이 f(x)가 위 방정식의 최종 해가 되는 것입니다.
그러면 이제는 상수 A를 구할 차례입니다. 이 문제에서는 f(0)=1/2라는 조건이 있었네요.
이를 대입 시 A=1/2가 될 것입니다.
하지만 이러한 방법에는 한계점이 존재합니다.
이렇게 f'(x)나 f(x)에 제곱같은 것이 붙어있을 때에는 쓸 수가 없고
처럼 상수계수가 붙어있는 경우에만 사용할 수 있다는 것입니다.
마지막으로 이 방법은 최후의 방법이기에 당연히 고교 수준으로 푸는 것이 가장 중요하다는 말을
끝으로 떠납니다.
맺는말) 공대오지마라 의치한가라
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
왜 클릭
-
엉엉
-
ㅇㄷㄴㅂㅌ ㅋㅋ
-
몇 명 안 뽑는 소수과라 볼 때마다 피말리네 점공에 없는 지원자들까지 생각하면 ㄹㅇ..불안
-
얼굴 ㅇㅈ은 안해서 살았다
-
황벨
-
ㅇㅈ 17
부엉이는 웃고있다
-
ㅇㅇ?
-
왜클릭
-
오랜만에 ㅇㅈ 13
광년이 버전으로다가
-
삼각형 ABC의 두 변 AB,AC에 내린 두 중선이 서로 직교한다....
-
자랑하나만할게요 2
캬
-
25수능 백분위 언매 92 미적 98 영어 2 물리1 94 화학1 97
-
여르비도아니고....
-
어그로 ㅈㅅ 쌍카풀 짝짝인데 쌍카풀 제거 수술도 있나요? 있다면 비용도 쌍수만큼 들련지요.
-
뭐 중앙대중앙대 거리더니 사실 불교엿음?
-
반수한다는 소식 뒤로 연락 두절 ㅠ.. 오르비는 계정만 있고 활동 없으시고 옯스타도...
-
가즈아
-
https://youtu.be/7IYlt_OcdVE?feature=shared
-
차라리 미적 → 기하 로 하고 과탐하는 건 어또련
-
사이테스 부속서 1에 속하는 풀떼기입니다 국제상 멸종위기종에 속해서 서류를 많이...
-
내 인생 신조 4
누군가 너에게 해악을 끼치거든 앙갚음하려 들지 말고 강가에 고요히 앉아 강물을...
-
오늘 새르비 땐 너무 거친 말을 많이한거 같음... 7
사실 현생친구 중에 중앙대 다빈치캠에 간 애가 있는데 걔가 올해 초에 지방교대를...
-
고3 커리큘럼으로 일등급수학을 푸는데 이게 맞나요?
-
중평 2
그만 낮추세요 (다군 중대일동)
-
숭배합니다 기공이면 높공 맞지 ㅇㅇ
-
대 건 공
-
탕후루 사주세요 ㅠ
-
오노추 3
그저!!!귀여운!!!!츠보미였어!!!!
-
연세대 앞 ㅇㅈ 14
무서우니까 코입은 가리는걸로
-
저 삼수하면서 올해 첨들어와요
-
꾸준글 아님
-
ㅇㅈ 11
미국도서관에서 3수준비중..하
-
아니 뭐 저장했다는건 아닐수도있고~
-
다들 ㅇㅈ하는데 7
혹시 지인들이 보면 어쩔라그래
-
중대애 차렷 1
의뱃을 향하여 경례!
-
ㄹㅇ
-
ㅇㅈ 10
망고빙수
-
성인인데 머리 그렇게하면 급식샛기같고 온갖 외관적 디버프만 받는데 왜 하는거야...
-
지금 사람 별로 없나요?
-
노래방보단피시방이재밌지
-
본 사람 또 보고 ㄹㅇ;;
-
포근한 느낌
-
이 또한 의대아니면 안가시는분의 은혜겠죠
-
자고 싶은데 2
ㅇㅈ 봐야 해ㅠㅠ
-
도태 안되고 갈려면 웃길 수밖에 없겠죠…?
-
ㅇㅈ 1
저도 덕코주세요
-
뭔떡밥이여 3
요약좀 과제 복붙하고 오타만 고치면 될듯 진짜 죽고십다
-
이분보다 제가 수학 잘하는데 혹시 수학 과외받을 사람 있나요? 여르비면 반값입니다
아 뭐야 비켜 !
링크보시면됩니다.
엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요!
즐거운 함수방정식의 세계로 떠나요
요약)dy/dx를 분수 취급하면 정신건강에 이롭다
수포자라서 모르겟다..
의치한 가지마라 무조건 스카이 가라
이 글을 보고 미적분으로 선택했습니다.
이 글을 보고 확통을 선택했습니다
1/y 적분하면 ln|y| 아닌가요?
절댓값
그러네여 ㅎㅎ 죄송합니다
TMI)
고등과정에선 절댓값을 붙이지만....
복소해석학의 관점에서 계산을 하면 상관없습니다.
약간의 오일러 공식과 함께 계산을 곁들이면
고등과정에서의 case를 나눈 결과과 같아집니다.
대략) y=Ae^x에서 A가 양수뿐만 아닌 실수인 이유라고 생각하시면 됩니다.
ㅋㅋㅋㅋㅋ 잊고살았던 공수의 기억
공학수학의 향기가 느껴지는 글이네요
미방 에쁠받아서 좋았는데 이제 다른데 가면 날아갈성적 ㅅ;
대학입시에서 이런 스킬들은 잡스킬. 딱 그정도.