허수들이나 그렇게 공부하지?
안녕하세요.
상승효과 이승효입니다.
허수들이나 교과서를 본다는 오해!
실수는 기출3회독 후딱 끝내고
양질의 컨텐츠를 벅벅 풀어야 한다는 오해!!
(참조글: 지금 대세는 분명히 "N제벅벅"입니다)
https://orbi.kr/00055543150
그 오해 때문에 2.5 등급의 벽을 넘지 못하고
수학때문에 끙끙 앓고 있는 학생을 위한 글입니다.
본인은 허수가 아니라고 굳게 믿지만,
성적은 왜 허수처럼 나오는지...
그 미스테리를 풀고 싶다면 바로 이 글.
넌 머리가 나쁜게 절대 아니야!!
특히 수업만 많이 듣고 문제 많이 풀다보면
성적이 오를거라고 믿고 있는 학생이라면
꼭 읽어보세요.
절대 성적은 알아서 오르지 않습니다.
내가 정확히 모르고 있던걸 발견하고,
하나씩 정확히 알아갈때 성적이 올라요.
학생1)
식으로 계산하는 법은 알지만
용어의 의미를 정확히 모르는 경우
수업 들으며 스스로 교과서 공부하는 학생의 질문입니다.
(4시에 질문하고 6시에 대답하고 실화냐ㄷㄷ)
그래프와 식 세운 부분은 전혀 문제가 없었어요.
대부분 3-4등급 학생들도 조금 배우면 해낼 수 있죠.
그런데 그 그래프와 식의 의미를 설명해보라고 하면
뭔가 애~매~~해지는 그 기분.
아나요?
아래 문제와 답변을 한번 보세요~
이상한 점을 바로 발견한다면
미분가능에 대한 개념이 확실히 있는거에요.
"미분가능" 이게 도대체 무슨 뜻이냐.....
2.5등급 이하라면 모르는게 정상이거든요.
아니 반대로 말하면, 모르니까 성적이 안나와요.
알면 성적이 오르는거죠.
자~ 이제, 교정을 하기 시작합니다.
분명히 아예 몰랐던게 아닌거죠.
수업시간에 배웠으니까요.
그런데 문제만 풀고 넘어갔더라면
본인의 문제점을 몰랐을거에요.
이 학생은 이제 미분가능에 대해서
더 확실하게 알게 되었습니다! 짝짝짝!!
미분가능성 문제를 맞힐 가능성이 올라간거겠죠?
이러한 작은 차이가 성적의 차이를 만들어요.
학생2)
천재의 아이디어를 모르는 경우
이 학생은 교과서를 보다가
다항함수 x^n 의 도함수를 구하는 과정을 발견했군요.
x^n 을 미분하면 nx^(n-1) 가 되는건 다 알아요.
알고 나서 보면 참 쉽죠?
그런데 이걸 알아낸건 누구일까요?
쌉고수라는 말로는 표현이 안되는.
그냥 천재. 쌉천재.
교과서에는 이런 천재들의 아이디어가 실려있습니다.
그런데 여러분이 교과서를 안보고,
증명을 공부하지 않는다면,
시험장에서 그걸 즉석에서 떠올리는건 불가능하겠죠.
우리는 모두 천재가 아니니까요.
여러분이 "발상"이라고 표현하는것.
수능 시험장에서 "발상"이 떠오르지 않아서...
이거 무슨 실모에서 봤던 "발상"같은데...
발상을 어디 다른곳에서 배워야 한다고 생각한다면
발상은 머리가 좋아야 할 수 있다고 생각한다면
그런건 다 착각입니다.
수능 수학 문제를 해결하는 "발상"은
반드시 교과서에 있어요.
예를 들어, 수열 문제를 풀다보면
여러줄을 쭉~써놓고 더해서
소거시키는 아이디어가 나오지요.
그건 어떤 천재의 아이디어일까요?
위의 증명을 보고 든 생각은?
1) 시험에 안나올테니 패스
2) 증명을 한번 해보고 넘어가자.
3) 식들을 다 외우자.
4) 천재의 아이디어를 캐치하자.
정답이 4번인건 맥락상? ㅎㅎ
여기서 식보다 더 중요한게 있어요.
위 증명에서 가장 중요한건
"1, 2, 3, ..., n 을 차례대로 대입하면"
"위의 n개의 등식을 변끼리 더하면"
이거에요.
이걸 알아야 하니까 교과서에 실려 있고요.
이렇게 풀어야 하는 문제가
수능에 출제되는 것이랍니다.
학생3)
중학교때 중2병으로 고생한 경우
가 아니더라도, 중학교때 공부한걸
제대로 기억하지 못하는 경우.... ^^;
도형 문제에서도
천재의 아이디어는 자주 나옵니다.
문제는 중학교에서 중요한걸 다 배운다는거죠.
너무나도 중요한 "수선의 발"!!!
도형에서 가장 중요한 아이디어죠~
조금 어려운 것도 있어요.
바로 중심각과 원주각이죠.
여기서 잠깐!!!!!
정말 중요한 포인트.
이런 그림들,
어디서 봤던 기억이 나나요?
기출문제에 있는 도형들에는
교과서에 있는 그림들이
마치 숨은그림찾기처럼 숨어있어요.
어떨 때는 그대로 나오기도 하죠.
즉, 교과서에 나오는 그림을
자꾸 보고 외워서 눈에 익숙하게 만들어야 해요.
만약 문제에 나온다면
교과서에 나온대로 선을 그대로 그리면
그게 문제풀이의 핵심 아이디어인
보조선이 되는 것이죠.
도형은 이번주에 끝내자
도형만큼은 제가 이번에
확실하게 끝내드리겠습니다.
5월 7일 2시에 라이브로 진행되고
라이브 못본 학생은 수업 이후에 영상으로 볼수 있습니다.
수업 개강 전까지 등록한 학생은
할인가인 2만원에 수강가능합니다.
다음주부터는 정상가에 판매되므로 기회를 놓치지 마세요.
** 지난주에 댓글로 신청한 학생은 쪽지 확인!!
<수강신청하러 가기>
https://academy.orbi.kr/intro/teacher/256/l
[6평대비 미친특강 16416] 개강일정 공개
게시글 주소: https://orbi.kr/00056397593
끝까지 읽어주셔서 감사합니다.
다들 힘내고, 궁금한 점은 댓글 주세요 :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ex) 우리대학은 수학 체감난이도 반영을 위해 1컷을 84점이라고 가정하고...
-
평가원 #~#
-
왜냐면 씨팔 내가 84니까!!!!!
-
이제 레포트 하나만 남았다.....
-
제 누백이 어느정돈진 어디서봐야되요? 진학사에선 못보나요?
-
설대식 378.2점 15
설대 아무곳이나 지를까 고민중인데 추천받음
-
수능 80(독서 다 맞고 문학에서 다 나감..)인데 김승리 들을까요? 강민철...
-
존맛탱
-
세지vs한지 2
둘중에 뭐가 좋을까요
-
요즘 느끼는거 3
ㅇㅇ가 좋다 이말이 아무런 노력 없이 내 귀까지 들어왔다는거는 이미 꿀을 다 빨았고...
-
노동의가치를저하시키고 사회에는일절도움안됨 그냥갑자기코인하다가 그런생각이듬
-
뭐하지 1
뭐하지뭐하지
-
선착순 2명 9
천덕씩 추합 불가
-
수학 등급컷 어디가 더 정확한가요?
-
불편해죽겠네
-
확통 2컷 투표 0
투표
-
캬캬캬 라이덴 렙업시텨줘야지
-
총괄 선택자수 1명 예정 ㄷㄷ
-
선착순3명 만덕 20
역 지하9층으로 집합
-
ㅈㄱㄴ
-
고전시가 질문 6
굳건한 바위가 아니라 끈으로 형상 했다고 해서 틀린거라고 생각했는데 답지에는 바위가...
-
경희 스나 2
경희 스나 평백 87인데 어떻게 생각함
-
과탐 잘본 경쟁자가 있다면 가산점만큼 차이가 더 벌어집니다.
-
정석준 근황 1
박사학위 땀
-
지르는건 너무 오바겠죠? ㅠㅠ 메가에 영어 들을 사람이 없다는데 영어 어떻게 해야할까요
-
HOME 0
Sweet home 진짜 좋네
-
과거의나vs현재의나
-
제도를 많이 만들어야함 대학도 그중 하나가 될 수 있다봄 아이랑 학업 병행하기...
-
현우진T가 매번 게시물 올리실때마다, 그 외에도 고1 수학 강조를 엄청 하시는데...
-
그 와중에 사교육문항 이러네 ㅋㅋㅋㅋㅋㅋ
-
전 고대 원래닉도고경호소인이였고..
-
오르비재미업슴 6
하루종일 등급컷얘기밖에 안해서 안들어오게됨..
-
이거까지 궁금해 할 필요가 있나
-
이거 뭐지??? 7
메가에서 강민철 조정식 현우진 와서 예비고3 설명회 한다길래 예약하긴 했는데 그냥...
-
ㅈㄱㄴ입니다 일요일 의대논술 가는데 흑색팬 지참이라 답안지는 흑색 볼팬으로 쓰는...
-
네에? 올해가 물이니까 작년 기준이니까 컷이높은거맞나요………… 작년기준맞ㅈ쬬?….9
-
님들 긴급질문 0
논술 답안지 단어 하나에 밑줄 그것도 원고지에 딱 맞춰서 그었는데 0점 처리일까요?...
-
펜홀더 휴재라니 0
기구하다
-
막 24세전에 애 3명일시 원하는 대학선택권
-
가채점표에 영어 답 밀려써있어서 심장쫄려 미칠 것 같아ㅏㅏㅏ
-
뭐 해먹고 살지 3
-
하면 어디감요? 전 중대갈수도요.. 중앙대가 제 목표대학이였어서 중앙대가너무가고싶음
-
https://youtu.be/UZl_PzjkTiA?si=hBYw-30rRFWiI2l2
-
일단 들어봐요
-
나의 장점 6
군필자 병장 만기 전역
-
김범준 대기 0
공통은1000번대 미적은 700번대라는데 스블 전엔 죽어도 안빠지겠죠? 3-4월쯤에...
-
If you 1
너도나와같이 힘들다며 우리 조금 쉽게갈순없을까 있을때 잘할걸그랬어
-
그런거안고자면왠지 평생느껴보지못한 감정을느낄수있을것만같음
-
에휴 시발
점수는 왜 허수처럼...윽 뼈맞았다 ㅠㅠ
교과서 정말 중요하죠. 요즘 많이 실감합니다.^^
최근 수능은 문제 해결전략이나 도구보다 “문제 해석”
그 자체가 훨씬 더 중요해졌어요. 그래서 교과서의 중요도가 높아진 것이죠.
백분위 98-99에서 고정 100 목표로 공부중인데 교과서를 본 적이 거의 없는데 교과서 한번 보는 것도 도움이 많이 될까요?
작년 수능/평가원 기준 백분위 98-99이라면 기출학습은 대부분 되어 있겠죠? 고난도 문제가 나왔을때 추론하는 것도 어느정도 익숙할테구요. 결국 최고난도 1-2문제 싸움일텐데, 그때 나오는 신유형(이라고 시험장에서 느껴지는) 문제를 해결할때 탄탄한 교과서 개념이 도움이 될 수 있습니다. 제 예전글 중에 쌉고수로 검색해서 나오는 글이 있으니 찾아서 보길 추천하고요.
혹시 고3인데 3/4월 학평 기준으로 백분위를 말하는거라면, 음, 앞으로 해야 할 공부가 많을 수도 있습니다.
N수생입니다! 가형 시절에 항상 1컷이었고 작년 평가원 수능 기준으로 98-99 정도에 머물러있습니다 교과서 개념도 탄탄하게 한번 봐야겠네요...! 쌉고수 글은 예전에 봤었는데 많은 도움 되었습니다!! 조언 감사드립니다 ㅎㅎ
그래요~ 그럼 교과서 한번 확실하게 보고, 수리논술 공부하시길! 올해에는 꼭 100점 맞길 바랍니다 :)
쌤 수업 들으면.
전부다 녹여 주시겠지요? 낄낄낄낄낄
잘 녹여놓았지 허허허허허
교과서는 어디 교과서가 가장 좋나요
출판사 추천은 하지 않아요~ 몇개 비교해보고 눈에 잘 들어오는걸로 보면 되고요. 4등급 이하라면 교과서 예제를 많이 푸는게 도움이 되니까 여러 출판사를 모두 보면 됩니다. 1등급 이상 수리논술 합격 대비 한다면 교과서 전체를 다 보면서 구석에 나와 있는 것까지 (생각해보기~ 어쩌구) 눈에 익숙하게 만들어 주세요.
맞은문제도 교과서 풀이를 하나하나 다 읽어봐야할까요
개념이 확실하면 문제가 자연스럽게 풀릴테니 교과서 풀이는 읽지 않아도 괜찮아요. 문제가 안풀릴때는 풀이를 볼게 아니라, 부족한 개념이 뭔지를 다시 봐야 합니다. 교과서나 문제집 풀이는 가급적 보지 마세요. 비효율적인 풀이를 암기하게 될 가능성이 있습니다.
개념이 확실하면 문제가 스르륵풀리나요..? 저는 개념 익혀도 쉬운예제도 막히던데..
둘중에 하나겠죠? 1) 개념이 확실하다고 생각했지만 사실은 구멍이 있다 (학생1 사례참조) 2) 문제 풀이의 아이디어가 예전에 봤던 교과서 어딘가에 나와있는데 모르거나 잊어버렸다. (예를 들면 수1에서 배운게 수2에서 필요하다든가, 고1에서 배운게 수1에서 필요하다든가)
개념을 제대로 배웠다면 이렇게 배우자마자 문제가 풀리기 시작하는게 정상입니다.
수 상하도 무시하면 안 되겠죠? 수 12랑 병행하면서 기본개념서만 보려고 하는데 괜찮을까요?
수 상하도 매우 중요합니다. 교과서 꼭 보세요.
저도 현역때 나형이었지만 교과서 정독으로 3주만에 낮은 3을 1컷까지 올렸죠..... 학원에선 조교쌤들이 문제만 엄청 풀어라, 7월 말에 반수 시작했는데 무슨 개념이냐 이러시는데 그 말을 곧이곧대로 들은 게 후회되네요....
9평 80점인데 초심 찾고 2등급 받아보겠습니다. 감사합니다.