[화1] 고난도 문항의 비밀 (1)
안녕하세요 수능 화학 강사 김동준입니다
다음회까지 화학식량과 몰을 마무리(?)하는 의미로
고난도 문항의 비밀 한 가지를 알려드리려고 합니다
사실 제목을 예전에 즐겨보던 웹툰을 패러디해서
역전! 야매화학 이라고 하려다가 너무 따라하는거
아닌가 싶은 생각에 고난도 문항의 비밀 정도로 바꿔봤습니다
(이미 무슨 말 하려는지 감이 오는 분도 좀 계실거같네요)
일단 바로 들어가보겠습니다
2021년 7월 학평 화1 17번입니다
바로 작년 문제라 아마 많은 분들이 기억하고 계실법한
준킬러임에도 불구하고 오답률 1,2위를 다투던 문제였죠
이 문제를 빠르게 해결해보려고 합니다
(가)에서 (나)로 넘어가면서 탄화수소가 17w 첨가됩니다
여기서 (나)에 첨가된 탄화수소를 구성 원소인
탄소(C)와 수소(H) 질량비로 나눠보면 다음과 같습니다
C3H4의 C와 H 질량비 9 : 1
C4H8의 C와 H 질량비 6 : 1
우연히(?)도 모두 더하니 17w가 되네요
→ 9w + w + 6w + w = 17w
여기에 야매를 0.1스푼 정도 추가해서
“탄화수소 종류에 따른 질량비를 대략 알고 있다면”
(가)에서 CxH6 5w이므로 C : H = 4w : w이 아닐까?
C:H=4:1 이면 C2H6?!
정리해보면 (나)에서
C2H6 C : H = 4w : w (5w)
C3H4 C : H = 9w : w (10w)
C4H8 C : H = 6w : w (7w) 이고
따라서 (나)의 C:H 질량비=19:3으로
ㄱ,ㄴ,ㄷ을 처리할 수 있습니다
이 문제를 이론적으로 접근한다고 하면
전체 질량이 17w, 부피는 9V, H 원자 수는 2N 증가이므로
증가한 양을 활용할 수 있습니다
(가)에서 C는 x로 알 수 없지만 H는 분자당 6개이므로
4V를 4몰(상댓값)으로 보아 H 원자를 24몰(=N)로 잡고
첨가한 C3H4와 C4H8의 부피를 각각 aV, bV라 하면
증가한 H 원자 수는 4a + 8b = 48몰(=2N)이 됩니다
부피는 9V 증가이므로 a+b=9이고
둘을 연립하면 a=6, b=3을 얻을 수 있습니다
이를 통해 증가한 질량을 분석해보면
C3H4 (M=40) 6몰, C4H8 (M=56) 3몰의 질량은
40x6 + 56x3 = 408이고 이게 17w 이므로 w=24.
따라서 CxH6 4몰의 질량 5w를 120이라 할 수 있고
CxH6의 분자량은 30이 되어 x=2를 얻을 수 있습니다
다만 여기까지 찾았다고 해도 ㄷ을 해결하기 위해서는
구성 원소의 질량비로 나눠보는게 제일 합리적이겠죠
여기서 복잡하게 각각의 C, H 질량 계산을 하고 있으면
19, 20번을 날리게 되니까요
하나만 더 보면 22학년도 대비 9월 평가원 화1 18번입니다
기체 1g 부피비가 15:22 이면 분자량비는 22:15 이고
여기에 야매를 0.1스푼정도 추가하여
“대표적인 질소 산화물의 분자량을 알고 있다면”
(가)는 N2O (M=44), (나)는 NO (M=30) 입니다
원자량은 Y가 X보다 크다는 조건이 있으므로
Y가 산소, X는 질소이며 따라서 (다)는 N2O3 (M=76).
물론 이 문제도 이론적으로 접근할 수는 있습니다
(가)와 (나)를 비교하면 분자량이 감소하는데
X와 Y의 질량비가 (가) : (나) = 1 : 2 이므로
Y가 증가할 수는 없고 X가 감소하여야 합니다
구성 원자 수가 5이하이고 원자는 자연수이므로
X, Y가 동시에 변해서 질량비 1:2가 나올 수는 없고
Y가 일정할 때 X가 2:1로 감소하는 상황에서
원자량 X>Y를 만족시키는 경우를 찾으면
처음 풀이와 같은 결론을 얻을 수 있습니다
다만 이 문제도 18번 문제이고
여기에 시간을 너무 많이 소모하면
킬러를 풀 시간이 점점 없어지게 되겠죠
여러분이 대비하고 있는 수능은
‘학문’이 아니라 '시험'입니다
화1을 치는 입장에서는 효율적으로 잘보는게 중요하지
얼마나 학문적으로 아름답게 잘 풀었는지가 중요한게 아니거든요
어쨌든 완벽하게 이론적이지는 못한 것이기에 조심스럽고
개인적으로는 이런식으로 화학을 하는게 좀 슬프기도 합니다만
어쨌든 수능 대비에 도움이 되는 관점이기 때문에
단원을 마무리하는 의미로 쓰게 되었습니다
다음 글에는 이 ‘야매’ 풀이가 나름의 근거를 갖는 이유와
자주 나오는 원자량과 분자량 등을 정리하고
주의할 점 등을 이야기해보려고 합니다
오늘도 긴 글 읽어주셔서 감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이때도내가 이얘기했는데 이런일이 또생기는거아니야...........
-
여긴 클린하게 쓰죠 ㅎㅎㅎ
-
피곤쓰 1
후
-
ㄹㅇ 궁금 의대생각?(진짜 모름)
-
이말만 몇번째냐.. 자고 일어나면 밤까진 안들어오는걸 목표로 할게요 응..
-
어그로저렇게끌어놓고 갑자기호감행동하면서 인지도쌓은걸로다가 갤주되려고함ㅋㅋ
-
과잠 꼭 입어보고 싶은데 찾아보니까 1학년은 과잠이 없고 2학년 전공선택때...
-
그냥 간단하게 답변함
-
앵그리버드닮았던걸로 기억함 태지가 조리돌림 겁나했었거든
-
심심해요
-
스터딘 마크2 신가
-
ㅈㄱㄴ
-
초코 우유 마시는 칠가이 할게요 전.
-
고닥교 친구중에 이재명닮은 애 있었는데 맨날 찢재명이라 놀리다가 크게 혼남
-
ㅁㅌㅊ임
-
화.학혁명님 그립습니다 18
오르비에선 그렇게까지 나쁜새끼는 아니였는데..
-
타도시 대학 0
엄마아빠랑 떨어져서 공부하기가 싫음ㅜ 고등학교 때 기숙사도 2달 반만에 런쳤는데...
-
ㄹㅇ 부엉 게이가 갑자기 연애 기만 어쩌구 저격하길래 쫄아서 사렸는데 그런건가
-
역시 빌런짓이 최고인건가
-
전 아스팔트에 갈린 손석구 많이들어봄
-
ㄹㅈㄷㄱㅁ ㅇㅈ 10
오늘의 개호감 고닉의 첫 팔로우는 제가 먹었습니다 캬캬캬 행복하구만
-
인증 재밋내요. 6
종종 섭외들어온거 촬영하면 올려야지 우하하 팡파레
-
그냥 개웃김ㅋㅋㅋ 14
-
습관성태그
-
공대 기?준?
-
심심하군뇨
-
덕코게임 5트) 5천덕 16
이건 좀 어렵지 아늘까
-
편의점 갈까말까 4
무한 고민하다가 1시간이 지났구나
-
다시 인증 21
어그로로 오해하길래 작년에 섭외온거 잠깐 찍은거임 우하하
-
문과 기준 로스쿨 지망하면 중대 공공인재 버리고 갈만함?
-
예전 비갤 레전드 10
비갤 레전드를 오르비에 끌고와도되나 싶지만 그 수정 삭제 버튼을 합성해서 셀프...
-
여러분들이라면 어디를 선택?
-
존예여르비도 아니고 특정해서 뭐할건데 특정당해도 디메리트가 없음 그냥 좀 쫄릴뿐이지...
-
아 아니라고?? 바로 줄없는 번지점프 하러갈게요
-
ㅎㅎ
-
이런 단결 첨보내
-
키 평범 외모 평균이하 성적 ㅍㅅㅌ 지능 평범 재산 평범 이런 느낌인데 무한엔수로...
-
얼굴 나이 인스타 본계(일부공개)
-
가군에 쓴 대학 4개정도 나군에 쓴 대학 1개 다군에 쓴 대학 5개정도 그리고...
-
나는 그냥 X스머신임 12
체스머신.
-
흑흑 13
-
본인은 3D 짝사랑이 있었음요. 3년 전 만났던 애가 유일함요. 친해져서 놀다가...
-
나도 인증해볼게 10
어 이미 내 얼굴은 공공재야
-
나도껴달라고!!!!!!!!!!!!!!!
-
내가 깐 것 6
나이키 나이키만 깜 낄낄낄낄깔깔호호
-
과잠 없는 과는 없는 이유가 뭘까요? 자신 과 드러내는게 싫나? 소수과도 아니고 신생과도 아님.
첫번째 댓글의 주인공이 되세요!
첫번째 댓글의 주인공이 되셨네요 ㅎㅎ
내신 킬러 문제에도 활용할 수 있을까요?
어느정도 선까지는 될텐데 다 적용할 수는 없을거에요 평가원에 적용하는것도 다음 글에 이야기 하겠지만 이걸로 다 풀린다 가 아니라 적절하게 섞어서 쓰는 방식이 될거라서요
넵
잘보고갑니다
맨날 잘 보고있습니다 ㅎㅎ 사소한거라고 생각할수도 있는데 이런 팁들을 생각하다 보면 시험장에서 무기가 될수 있을거라고 생각합니다 !
넵 다양한 도구를 갖춰놓으면 그만큼 더 도움이 될거에요~ 답글 고마워요 ^^
정말 화학1은 아름다운 풀이니 뭐니 수학이랑 비슷하면서도 결국 빨리 확실하게 푸는 것이 최고의 풀이인 것 같습니다
해설에서는 이론적으로 설명해주어야겠지만 잘 풀기 위해서는 요령이 매우 중요한...
그쵸 나름의 엄밀성을 추구하기는 하지만 너무 그쪽으로만 가도 시간이 부족하다보니...ㅠㅠ
혹시 서메기 출강하시는 그분...?
ㅎㅎ 넵 혹시 작년에...?
사실 쌤한테 수업 듣지는 않았는데
올해 윈터스쿨 교재에 쌤 성함이 있어서요
앗 그렇군요 ^^ 기숙사 생활 힘들었을수도 있었을텐데 고생했어요~!