[박수칠] 적분 기호 ∫의 이해
미통기 ‘다항함수의 적분법’과 적통 ‘적분법’으로 들어가면 ∫(integral)을 배웁니다.
이미 알고들 있다시피 부정적분과 정적분의 표현에 사용되는 기호이고,
합을 의미하는 Sum의 머릿글자 S를 변형한 것이죠.
∫>
부정적분의 ∫은 도함수의 기호 d/dx와 정반대의 의미를 갖습니다.
dx와 짝을 이뤄서 ∫ dx의 형태로 사용되구요.
함수 F(x)의 도함수가 f(x)이면
라고 쓰며, 이때 f(x)의 임의의 부정적분이 F(x)+C이므로
와 같이 씁니다.
보다시피 부정적분에서 ∫은 합이라는 본래의 뜻과 무관하게 쓰였습니다.
합이라는 의미를 갖는 것은 정적분에서죠.
∫>
정적분의 정의는 함수의 그래프와 x축 사이의 넓이를 구하는 것에서 출발합니다.
함수 y=f(x)가 닫힌 구간 [a, b]에서 연속이고, 이 구간에서 f(x)≥0일 때
함수의 그래프와 x축, x=a, x=b로 둘러싸인 도형의 넓이 S는 다음과 같이
구할 수 있습니다.
(1) x축 위의 구간 [a, b]를 n등분한 다음, 양 끝점과 각 분점의 x좌표를 왼쪽에서부터
차례로 x0(=a), x1, x2, …, xn(=b)이라고 합니다. 다음으로 각 분점을 지나면서 x축에
수직인 직선들로 도형을 자르고 이웃한 두 수선 가운데 오른쪽 수선을 높이로 하는 직사각형을
만듭니다.
(2) 이때 왼쪽에서 k번째 직사각형의 넓이와 모든 직사각형의 넓이 합은 다음과 같이
표현됩니다.
(3) 여기서 n→∞이면 구간 [a, b]에 존재하는 분점이 무수히 많아지기 때문에
각 분점의 x좌표들은 연속적으로 변하는 실수가 된다고 할 수 있습니다.
따라서 각 분점의 x좌표의 일반항 xk는 이 구간에 속하는 임의의 실수 x로 바꿀 수 있죠.
또한 직사각형의 가로 길이 는 0에 한없이 가까워지기 때문에 도함수의 기호와 같이
dx로 바뀝니다. 이때, 각 직사각형의 넓이는 다음과 같이 표현됩니다.
(4) (2)에서는 직사각형의 넓이가 k에 대한 식으로 표현되기 때문에 직사각형들의
넓이 합을 Σ로 표현할 수 있지만, (3)에서는 k가 없어졌기 때문에 Σ로 이들을
더하는 것은 불가능합니다.
따라서 직사각형의 넓이를 더하기 위해 새로운 기호가 필요한데 그것이 바로 ∫입니다.
x좌표가 x인 곳에 생긴 직사각형의 넓이 f(x)dx를 x=a일 때부터 x=b일 때까지 더하는
것은 다음과 같이 표현할 수 있습니다.
이처럼 Σ는 불연속적으로 변하는 직사각형의 넓이 의 합,
∫은 연속적으로 변하는 직사각형의 넓이 f(x)dx의 합을 표현합니다.
(부정적분에 ∫이 쓰인 이유는 정적분의 기본 정리에 따라 정적분의 계산에
부정적분이 필요하기 때문입니다.)
이렇게 이해하면 좌표축과 도형 사이의 넓이, 또는 도형의 부피를
정적분으로 간단하게 표현할 수 있죠.
<두 곡선 사이의 넓이>
두 함수 y=f(x), y=g(x)가 닫힌 구간 [a, b]에서 연속이고, f(x)≥g(x)일 때
두 함수의 그래프와 x축, x=a, x=b로 둘러싸인 도형의 넓이 S는 다음과 같이
구할 수 있습니다.
(1) x축 위의 구간 [a, b]를 n등분하고,
각각의 분점에서 x축에 수직인 방향으로 수선을 그어서 도형을 자릅니다.
그리고 왼쪽에서 k번째 구간 [xk-1, xk]에 직사각형을 그리구요.
이 직사각형의 가로 길이는 , 세로 길이는 f(xk)-g(xk)입니다.
(2) n→∞이면 (1)에서 만든 직사각형의 가로 길이 는 한없이 0에 가까워지면서
dx가 됩니다. 또한 구간의 오른쪽 끝 xk를 x로 바꾸면 직사각형의 높이는
f(x)-g(x)가 됩니다.
(3) 따라서 도형의 넓이 S는 다음과 같이 계산됩니다.
<단면적을 아는 입체도형의 부피>
아래 그림과 같이 점 (x, 0, 0)에서 x축에 수직인 평면으로 잘랐을 때,
단면적이 S(x)인 입체도형이 있다면, 그 부피 V는 다음과 같이 계산할 수 있습니다.
(1) x축 위의 구간 [a, b]를 n등분하고,
각각의 분점에서 x축에 수직인 평면으로 도형을 자릅니다.
그리고 왼쪽에서 k번째 구간 [xk-1, xk]에서 평면 x=xk로 잘린 단면을 밑면으로 하는
기둥을 그리구요. 이 기둥의 높이는 , 단면적은 S(xk)입니다.
(2) n→∞이면 (1)에서 만든 기둥의 높이 는 한없이 0에 가까워지면서
dx가 됩니다. 또한 구간의 오른쪽 끝 xk를 x로 바꾸면 단면적은 S(x)가 됩니다.
(3) 따라서 도형의 부피 V는 다음과 같이 계산됩니다.
그럼 예제 하나 풀어보죠.
2014학년도 수능 B형 13번 문제입니다.
(1) 먼저 부피를 구하려는 회전체를 그림으로 표현하면 다음과 같습니다.
직선 l과 쌍곡선 C의 방정식을 연립해서 풀면 교점의 좌표는 (0, 0), (3, 2)가 되구요.
(2) 회전체의 바깥면은 직선 l이 회전해서 만듭니다.
이 회전체의 부피는 다음과 같이 구할 수 있죠.
(3) 회전체의 안쪽면은 쌍곡선 C가 회전해서 만들고,
부피는 다음과 같습니다.
(4) 따라서 구하는 회전체의 부피는 (2)-(3)으로 구할 수 있죠.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
쉬운편인가요?
-
재수학원 다닐때인데 학원 자체 문제를 풀게 시켯음뇨 근데 암만봐도 이거는 정답이...
-
ㅅㅂ 애들이 ㅈㄴ 틀딱 취급하는데 서러워서 어케 살어
-
사탐런이니 지학이니 뭐 이상한 조합이나 이상한 메타도 결국 남들이 하나둘 하기...
-
토익부터 조금씩 4
공부시작해야겟군..근데 뭘로하지
-
임싱했어? 3
어..
-
내신망해서 내신다시만들고싶은데
-
맘만 먹으면 누구나 성별전환 가능한 사회에서 여성욕하는건 어불상설 욕할시간에 여자가...
-
미적 ㅋㅋ 0
파아군
-
도서관에서와서 4시간 동안 폰만봤더
-
낮공 상관 없이 최대한 어디까지 갈 수 있을까요?
-
⭐ https://forms.gle/hNQQ4e2kbGftj49x9 다름이 아니라...
-
학과 분위기 취업 수업내용 난도 등
-
가군 외대 나군 건대 다군 동대 합격증 콜렉터 렛츠고
-
덕코가 흐흐
-
ㅇㅇ?
-
25수능 패스랑 26패스 둘 다 샀는데 기존에 듣던 강의가 내려갔길래 문의해서 수강...
-
07인데 뭐 입시자료부터 인강 다 모르겠어요.. 인강 커리는 언제부터 뜨는지도 모르겠고요..
-
ㅇㅇ 폰중독자임
-
물부으면 물이 스르륵 사라지고 동전이 물티슈로 변신해요 나만 신기해?
-
학원 드디어 퇴사 15
너무 힘들었다 진짜.. 지방이라 잘하는 친구도 몇 없고 수상수하수1수2미적확통...
-
다들 문디컬 갈 거면 언매 미적 해야한다던데
-
여혐생길것같다 4
못생긴애가 지 잘난줄 알고 나대면 여혐생긴다
-
롤체 다1찍었다 0
마스터 가보자
-
고1 내신 원하는대로 나올때까지 재도전 하는게 의대 정시 재수 삼수 하는것보다 훨씬 나아보임
-
6평때 메가가 미적 84로 잡았는데 실채 80이었다는거임 항상 실채점 컷이 업체...
-
어뜨카냐 진짜 하..
-
나가기 귀찮다 10
사실 지금도 약속시간 늦음
-
BL or 백합임 수정 일본
-
서성한 내려치기해서 미안하다 훌리들아
-
어디가 더 나은 선택지임? 목표는 높2업 화1 20번 남기고 3분 남았는데 각이...
-
어차피 삼수이상 할거면 고등학교 다시 다니는게 낫지 않음? 4
의대 수시 비율보면 아무리봐도 그게 더 나아보이긴함
-
왜냐면 교수님들도 포기하신거지 ㅋㅋ
-
키잉이이
-
Iq 검사 결과 10
하나만 왕 높은 듯하다..
-
김범준 정병호 0
1 김범준 현강 공통 가는데 기출 다루나요?? 2 정병호 미적 현강 가는데 뉴런이랑...
-
입시사이트에서 일한다면 거를꺼임뇨
-
의대지망인데 정시 노리는거 자체가 이미 늦은거 아님? 0
수능 3등급 받아놓고 의대 합격한 수시충들이 이와중에도 조용히 의뱃달고 꿀빠는거 보면 좀 역겹긴 함
-
예비 고3 수학 1
고2 모고 풀면 1~18 22~27 까지는 푸는데 19는 손을 좀 대도 20 21...
-
과외를 전업으로 하는 거에 대해 어떻게 생각하시나요? 21
다양한 의견을 들어보고 싶어서 질문 남깁니다 물론 안정성 면에서 과외를 전업으로 할...
-
ㅠㅠ
-
메디컬 과1사1이면 지원 자체는 다 할 수 있는 건가요? 0
진짜 몰라서 하는 말임뇨 사2랑 똑같나요?
-
수능 당일 패스 판매량 최대 ㄷㄷㄷㄷ
-
걍 ㅈㄴ 스트레스 받어 하…..
-
메디컬,계약학과 제외 입결이 가장 높은과가 어디인가요??
-
심심하다 0
ㅇ ㅠ ㅇ...
-
한화가 제바딜을 들고 40분동안 이어가고 있는거보면 그래도 나름 잘 버티는것 같다
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
의대가고싶으면 선택과목 결정보다, 인강 추천같은거보다, 수시나 지역인재 찔러넣기...
부정적분에 적분구간이 있을 수는 없어요 수정해주세요
본문에서 어느 곳을 얘기하시는 건가요?
거의 맨 윗부분 말씀하시는거 아니에요? 이미지로는 두번째쯤?..
이런 실수가 있는지 몰랐네요...
수정했구요, 두 분 모두 감사합니다.
ㅎㅎ 좋은글 감사드려요. 비록 전 문과지만ㅜㅜ 끝까지 이해해보려고 노력해봤네요. 감사합니다!^^
앞까지는 문이과 공통입니다. 어려운 부분 있으면 질문 주세요~ ^^
고맙습니다