<3월 학평 후 마음가짐과 수능 출제 경향의 변화,규칙성문제 4가지 풀이>
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고속 누백 라인 0
백분위합 밑이 누백인가요 아니면 표점합 밑이 누백인가요?? 그리고 저정도 누백이면...
-
션티vs이명학 0
대성패스 있고요 영어선생님 아직못고르고있는데 두 선생님분들 해석 스타일이 어떻게...
-
www.instagram.com/ijeoxen56/
-
권용기 한명만 들으려고 대성패스 결제할정도로 메리트가있나요?
-
공군: 복무 기간이 육군보다 3개월 더 기니까 3개월동안 후회함 육군:18개월동안 후회함
-
부대 수험표 0
부산대 수험표 거기서 뽑을 수 있나요? 집에 두고 옴;;;
-
1월 1일 지나도 졸업증명서 필요한가요 ㅠㅜ
-
학생증 ㅇㅈ 6
신학생증 너모 예쁘고… 이건 똥구데기 기존학생증ㅋ
-
진짜 개병신직장일수록 우리 직장에 ~대학 몇명있다 이딴 개소리 엄청 함 아니 시발...
-
얼버기 4
얼리버드 기상
-
주말 통삭제되는게 진짜 말이안됨
-
작년,재작년에 대강 예비 50번까지 돌았는데 올해 최저 3합7 생겨서 예비 덜...
-
요약 : 놔두면 어차피 죽는 6살 장중첩증 소장괴사 환자를 수술했으나 안타깝게...
-
세지1등급, 지구2등급 가능할까요? 세지는 1등급 뜬다하면 백분위 97 이상...
-
화작미적물1화1 91 98 1 77 70(메가기준) 인데요 ㅠㅠ 이대 컴공 논술...
-
저 사람 왜케 좋지 10
사랑에빠짐
-
한줄요약 : 장이 썩어들어가 당장 죽기 직전인 신생아를 일반외과 의사가 수술해서...
-
이거 메가 경쟁자 대비 성적분포로 전체 채점결과를 알순없나? 3
본인 원점수를 조정하면 그 원점수에 따른 경쟁자의 성적분포가 나오는데 그럼 내...
-
언매, 미적의 메가스터디 채점자 평균치의 상대점수는 대략 비례하는 경향이 있음. 내...
-
그냥 따라하기만 함
-
어디가 더 좋을까요? (참고. 한양대 전기는 전자공학이 아님)
-
얼버기 5
죠은 아침
-
ㅈㄱㄴ
-
새벽감성노래 1
이미새벽은지나갔지만
-
뭔가 위에 대학 이름이랑 같이 붙어있으면 너무 위에 쏠려있는 느낌서울대나 경희대처럼...
-
기상 완료 알바 가기 시러
-
진짜 인재 놓친거다.
-
오르비 망했나
-
이번수능 대충 언미영사문생1 23212 받았습니다 순수과학에 흥미가 생기기도했고,...
-
갈드컵 안열리네 예전에 이거갖고 말 엄청 많았던걸로 기억하는데
-
경북대 치대 논술 가야할까요??ㅠㅠ 지금 6칸입니다ㅠㅠ
-
삼반수 할까 3
작수 55332 올해 33231 흠
-
내신 대비로 어떤 문제집이 괜찮은가요???
-
어느길로갈까요 7
젤 무서운 길을 8분 정도 걸리고 가로등 없음... 다른 길은 15분에 가로등 몇개...
-
재수는 싫고 반수하면 놀다가 제대로 못할거같고 남은건 군수뿐인거같은데
-
집이드 편의점최고
-
문제집 분리수거 3
이번 수험기간동안 푼 문제집들 다 종이 버리는곳에 버리면 될까요? 스프링은 없어요
-
치감걸린듯 4
왜 힐이안되냐
-
기적의 수면패턴 3
8시수면 4시반기상 ㅋㅋ
-
알바 헬스 대학공부
-
처음부터 마지막까지 네 맘을 알고 싶은걸
-
반갑습니다. 10
-
아낌없이주는나무는이제없다..
-
전시즌 플레계정인데 랜만에 켜서 한판해서 첫판 이겼더니 실버 4를 주네
-
벌써 2028 수능 준비하는 사람 있음? 아는 08 지금 자퇴하고 2028 수능 준비하는데
-
이번 겨울부터 시대 라이브반 수강하려고하는데 언제쯤 개강하나요??
-
나도 그때까진 생지가 무슨 이과냐고 생각하면서 이과가 물화중 하나도 안 하는게...
-
방금 라면먹고 4
식은 밥말아먹는 중인데 살안찌겠죠? 오늘 아침안먹었고 점심 저녁만먹음 점심엔 떡볶이...
-
행렬 공간벡터 모비율의 추정 롤백시킨건 근본스러운데 4
행렬은 공통수학1에 있어서 간접 연계로 들어가는데 수학적 귀류법이나 순열처럼...
A형 21번과 B형 20번 인것 같습니다
B형 21번은 규칙성 문제가 아니라 다른 문제 였거든요
글쓰는과정에서 실수...감사
오.. EBS경찰대 기출의 그선생님이시다.. 반가워요ㅎㅎ
계산이 많이 복잡해졌다는거 너무 공감되네요. 저도 이문제 계산실수로 틀렸는데 이런거 줄이려면 많이 풀어보는 방법밖에 없겠죠?
핵심유형을 확실히 알고 평소에 다양한 벙법으로 생각하다 보면
간단하게 풀 수 있고 그러다보면 실수도 줄지요
규칙성이 오락가락하는거라
이문제는 계차수열로 풀다보면 복잡해져서 실수가 나올 수도..
단순한 실수라면 후반으로 가면서 자연히 없어지니 걱정 안하셔도 됩니다
와 남언우 선생님이시다!!
2011년이었나 그 때 수능개념특강 1~2등급 전용 강의 정말 잘 들었어요.
그거 프린트해서 필기한거 아직까지도 가지고 있답니다.
선생님께는 정말 개인적으로 감사드립니다.
제 수학 실력의 밑바탕은 거의 선생님에게서 나왔다고 해도 무방할 정도입니다.
기억해주니 감사
당시만 해도 ebs가 상위권용 강의를 기획할 때라..
이후에는 하위권용 강의를 많이 개발하는듯...공익방송이고
전국에는 하위권학생이 훨씬 많으니 당연하지만 ..
그럼 벌써 3학년 ㅎ 이제 또 미래를 진지하게 생각할 때이네요
너무 너무 최고 였던 남언우 선생님...
우연히 클릭 했다 보여서 깜놀..
감사합니다
앞으로의 인생도 좋은 분들과 함게 더욱 발전하시길~
잘 들었습니다!! 마지막 방법 진짜 신기하네요!!
예를 들어 n(n+1)/2를 n으로 나눈 나머지를 An이라 할때
A1+A2+...A10을 구하라 와 같이
n(n+1)/2 를 n으로 나눈 몫이나 나머지를 갖고 수열 문제를 만들 수도 있습니다 그럴 땐 마지막 방법이 유효하겠지요
한 문제를 깊이있게 생각해본다는 것은 문제해결력향상이상의 효과가 있습니다
군수열로 푸는 첫번째 방법이 이해가 잘 안가네요.
홀수행이 1+2+3+~~~~~~~~(2n-1)이 되는지 알려주실분 누구 없나요?
n군(n행)에는 n개의 연속한 수가 있지요
1행에는 1개, 2행에는 두개, 3행에는 3개가 있으므로 3행까지 쓰인 수의 총 개수는 1+2+3=6이고 수는 1부터 연속해서 쓰이므로 3행의 끝수는 6이지요 마찬가지로
홀수행(2n-1)일때는 2n-1행의 마지막수이므로 그때까지
즉 1행부터 2n-1 행까지 쓰인 수의 총개수와 같습니다
따라서 1+2+3+...2n-2+2n-1 이 됩니다
아 잘못해서 비추천 되었네요. 죄송합니다.
군 수열은 쓴이유가 n의 배수가 마지막 숫자에 해당하고
홀수번째 군수열의 행의 개수 합이 일치하기 때문에 군 수열의 합을 쓴건가요??
추가해서 질문드리자면 해설로 볼땐 이해가 가는데 막상 시험문제로 나오게 되면 어떻게 저렇게 발상할 수 있을지 궁금합니다.
몇번째 수인지 찾으면 되는데 몇행의 몇째수인지 알 수 있으니 몇번째 수인지도 금방 알 수 있지요
군수열 문제 몇개만 풀어보고 훈련하시면 전형적인 유형에서 홀수행과 짝수행규칙이 반복되는 것임을 알 수 있을 것입니다
위 수열에서 기본적인 군수열문제가 되려면
10행 세번째 수는 얼마인가? 또는
48은 몇행 몇번째 수인가? 등이지만 조금 변형한 걸로 보시면 됩니다
수열의 규칙성 문제가 어떤게 있는 지 학습하시면 됩니다 발견적추론을 기본적으로 할 수 있어야 하지만 고난도문제는 발견적추론과 계차수열만으론 해결이 힘들 수 있습니다
본인이 알고 있는 것들을 생각해 보시면, 예를 들어
어떻게 등비수열의 합을 그렇게 구할 생각을 할 수 있을 까요? 더 어려운 계차수열도 알고 있잖아요?
학습입니다. 배우고 익히고...충분히 익혀 둔다면
다음에 비슷한 문제를 봤을 때는 충분히 생각할 수 있을 것입니다 생각해 보지 않았을 뿐 어쩌면 현재의 실력으로도 충분히 풀 수 있는 방법입니다