한달만에 수학 잘하게 되는법 for 2023
안녕하세요.
수학의 쌉고수로 만드는 수학강사
상승효과 이승효입니다.
다들 설날은 잘 보냈나요~~ 새해 복 많이 받으세요!!
댓글로 새해 덕담 한줄씩 남겨주면
올 한해 좋은 일만 있으리라!!! 하하하 :D
오늘의 주제는 '한달만에 수학 잘하게 되는법'!
작년 여름에 올렸던 같은 제목의 칼럼이
아주 뜨거운 반응이었는데요.
한달만에 수학 잘하게 되는법 알려드림
게시글 주소: https://orbi.kr/00037957848
이후 제 수업의 학생들도 엄청 늘었고 (작년 1위 달성!!)
칼럼만으로도 도움 되었다는 쪽지도 많이 받았더라요.
작년에 쓴 글은 6평 이후에 쓴글인만큼
오늘은 설연휴 이후 지금 이 시기에 필요한
공부법에 대한 이야기를 해보겠습니다.
인강/독학러에게 도움이 되는 이야기가 이어지니까
제 수업을 듣지 않는 학생이라도
2023수험생이라면 꼭 끝까지 봐주세요.
그 전에 여러분이 알았으면 하는 것이 있습니다.
제가 '한달만에'를 강조하는 이유! 는 무엇일까요?
공부를 제대로 하고 있다면
한달안에 무언가 눈에 띄는 변화가 생겨야 하기 때문이에요.
개념을 한달째 공부하면서
"우와 대박!" 이런 느낌이 없고
"흠.. 나중에 문제 많이 풀다 보면 되겠지...?"
라는 느낌이라면 문제가 있다는거죠. (주의!!)
물론, 대박! 이라는 느낌이 온다고 해서
모든 문제가 다 해결되는건 아닐테고,
이제부터 복습하고 반복하고 연습하고 갈길은 멀지만
어쨌든 한달 사이에 어떤 변화가 생겨야만 한다는거에요.
아래는 수2 상승효과 개념 3주차 학생의 반가운 카톡!
헉, 근데 기본 개념만 설명했는데 22번이 풀린다고??
사실, 제 수업에서는 놀랄 일은 아니라요.
만약 작년에 수능을 본 N수생이라면
개념을 다시 공부하면서 얻게 되는 내용으로
못풀었던 작년 수능 문제가 혼자 힘으로 풀리기 시작해야 해요.
아래는 실력지상주의 수강생!
상위권에서 최상위권으로 가기 위해서는 시간싸움이죠.
스킬도 굉장히 중요하구요.
실지주 수강생정도라면, 이미 대부분 개념은 알지만
여기서 중요한 단어가 두두등장!!
네~ 바로 새로운 관점입니다.
그게 없다면 다시 처음부터 공부를 하는 의미가 없죠.
개념을 공부한답시고 다 아는거 보면서
시간을 낭비하면 절대 안되요.
개념공부도 문제를 풀기 위함이고
기출분석도 문제를 풀기 위함이고
문제 풀이와 개념은 연결되어 있어야 합니다.
개문일체!!
여러분이 3시간 공부를 했다면 스스로 문제를 풀때
(수업시간에 배운 문제 풀이 외워서 푸는거 말고)
오~ 뭔가 다르네~ 하는걸 꼭 느껴야 해요.
자 그럼 이제 본론으로 들어가서,
한달만에 수학을 잘하기 위해서
즉, 짧은 시간안에 변화를 만들기 위해서는
무엇을 어떻게 해야 할것인가!
"새로운 관점 배우기" 처럼 혼자서 하기 힘든거 말고
스스로 조금의 노력으로도 큰 변화를 만들 수 있는 것들
몇가지만 제가 알려드리도록 하겠습니다.
올해 상승효과 커리큘럼에 새로 추가된
수능 수학 방향성 가이드 강좌죠.
"디렉션" =에서 발췌한 내용입니다.
1. 모르는 단어가 없을때까지
수학의 개념을 한 단어로 표현하자면 "약속"입니다.
모든 약속은 아주 정확해야 해요.
국어나 영어처럼 해석의 여지가 있지 않습니다.
어렴풋이 알고 있으면 안되고
미분! 하면 도함수를 구하는 것이 나와야 하고
도함수! 하면 미분계수가 나와야 하죠.
그런데 이렇게 꼬리의 꼬리를 물고 계속 이어지는건
수학1/수학2에서 끝나면 안됩니다.
고1 수학(상/하), 중학수학까지 계속 이어져야죠.
적당히 멈추면 안되고, 함수가 뭔지, 방정식이 뭔지
기본적인 개념들부터 정확히 알고 있어야 하고요.
'대응'이라는 단어처럼 그냥 봐도 대충 의미가 와닿는 것도
다 교과서에서 정의가 되어 있는대로 알아야 합니다.
여기서 주의해야 할 점. 위에서 개문일체라고 했죠?
개념따로 문제따로가 되면 안되요.
문제를 읽다보면, 어떤 식을 주면서
어떨때는 함수라고 하고 어떨떄는 곡선이라고 하죠.
어떤 문제는 방정식이라는 단어로 시작합니다.
3점 문제니까 풀줄 알고 답은 맞추는데
자~ 그럼 너 도형의 방정식이 뭔지 설명해 볼래?
하게 되면 정확히 모르니까 말문이 턱턱 막히는거죠.
그렇기 때문에 4점 문제를 보게 되면
문제 해석이 정확하게 안되고 적당히 풀다가
어떨때는 맞추고 어떨때는 틀리는거랍니다.
어디서 찾아봐야 하나요? 꼭 교과서를 보세요.
교과서를 보기 시작하면 여러분의 수학인생이
한달안에 완전히 달라질겁니다.
수능에 나오는 모든 문제의 소재/표현은
반드시 교과서에 있다는걸 깨닫게 되면
그 뒤로는 공부가 참 쉬워져요.
2. 개념의 플로우(Flow)를 이해하자
모든 개념은요. 바탕이 되는 내용이 있게 마련이에요.
중학교때 배운 지수를 확장시켜서 지수법칙을 새로 만들고
지수함수 로그함수의 그래프까지 넓혀나가고요.
중학교때 배운 삼각비를 확장시켜서 삼각함수를 배우는거죠.
그렇다면 삼각함수를 잘 알기 위해서는?
일단 중학교 때 배운 삼각비를 정확히 알아야 하고요.
확장시키기 위해서 어떤 개념을 새로 배우는지 ex) 일반각
그리고 가장 중요한. 이거 왜 확장시키는데?
그 이유까지 정확히 이해하고 설명할 수 있어야 합니다.
얼마전에 유튜브 라이브로 전화상담을 하면서
어떤 수강생이 제 수업이 굉장히 잘 짜여있다는 평을 해줬는데요.
여러분도 개념의 플로우를 캐치하게 되면
아, 교과서가 정말 치밀하게 구성된 한 편의 각본이구나,
를 느낄 수 있을거고요. 유형별 암기가 아니라,
제대로 이해하면서 수학을 재밌게 공부하게 될거에요.
교과서의 목차에도 플로우가 있습니다!
예를 들어 수학2에서 가장 중요한
"다항함수의 미분법 - 도함수의 활용" 단원의 순서를 보면
1. 어떤 "점" 주변에 대한 관찰 -> 접선
2. 어떤 "구간"에 대한 관찰 -> 증감
3. 구간의 "경계"에 대한 관찰 -> 극점
4. 구간 "전체"에서의 점들의 집합 -> 그래프
등으로 점점 범위가 넓어지면서 확장이 되고 있어요.
그래서 그래프를 그릴줄 알게 되면
그래프를 방정식과 부등식에 활용하고
수직선 운동에 활용하면서 단원이 끝이나죠.
단원별로 따로따로 떼어놓고 외우기만 하면 되는,
수학은 그런 과목이 아니라는 말입니다요.
3. 도형이 약하다면 증명부터
증명의 중요성은 몇번이고 강조해도 부족한데요.
특히 최근에 공통과목에서 더 중요해진 도형!!
많이들 어려움을 겪더라구요.
중학 도형부터 수1, 미적분까지
도형관련된 모든 증명, 반드시 알아야 하는 이유는
증명이 바로 문제풀이의 발상이기 때문이에요.
교과서에 없는 발상? 절대 출제되지 않습니다.
사실 도형에 관해서만큼은 혼자서 끙끙대지 말고
제 수업 듣고 한번에 끝내라고 추천해 주고 싶긴 합니다.
효율의 차이가 너무 많이 나서요.
지금 진행중인 상승효과 수학1/미적분/실지주 미적분에서도
도형을 한번에 완전히 끝내는 수업을 하고 있으니
여건이 되는 학생은 꼭 들어보시고요.
혼자서 공부하는 상황이라면
중학교 교과서를 보고 증명을 해보되,
증명했으니까 끝! 이게 아니고...
반드시 기출문제의 발상과 증명을 연결시켜보세요.
아... 여기서 보조선을 이렇게 내리는건,
이것과 관련있구나. 다 이유가 있군!!
느껴봐야 합니다.
혼자 공부하는 학생들을 위해
요즘 유튜브에 증명을 올리고 있습니다.
구독 부탁드려요~~
오늘 칼럼은 이걸로 마칠게요.
핵심 키워드 하나만 뽑으라면 교과서!!
다음 칼럼은 기출 분석이 될 듯 싶네요.
다들 힘내고. 올한해 좋은일만 가득하길!!!!
0. 이승효의 디렉션
지금까지 이런 수업은 없었다.
수능수학을 제대로 이해하고 싶다면 디렉션부터
8시간동안 컴팩트하게 교과서/기출 등 방향성 총정리.
자세한 안내 및 등록은 아래 링크에서
https://academy.orbi.kr/intro/teacher/278/l
1. 상승효과 수학1/수학2/미적분/확통
2.5등급의 벽을 시원하게 넘고 싶은 학생을 위한 개념 강좌.
그치만 그냥 개념, 천편일률적인 개념, 뻔한 개념이 아니라
4점 문제가 진짜 풀리게 만드는 신기한 개념강좌
자세한 안내 및 등록은 아래 링크에서
https://academy.orbi.kr/intro/teacher/256/l
2. 메디컬합격 - 실력지상주의 공통/미적분
일단은 평가원 기출부터, 주제별로 완전히 박살내고 갑니다.
새로운 관점. 새롭기만 한게 아니라 정확한 이해.
문제 풀이 속도를 비약적으로 향상시키는 풀잇법까지.
자세한 안내 및 등록은 아래 링크에서
https://academy.orbi.kr/intro/teacher/252/l
수업은 현장강의 대치동 디오르비에서.
비대면 라이브 및 복습영상 당연히 있습니다.
지방러 환영!! 수강생은 카톡 질답 및 상담 가능!!
공부법 및 수업관련 궁금한점은 댓글 주세요~~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
공대는 사탐허용해놓고 정작 물리수학 필요없는 의치대만 과탐필수박아놓음 대부분 ㅋㅋㅋㅋㅋㅋ
-
사탐공대는 대학 가면 힘들다거나 그런 이유로 과탐하라는 사람 있던대 정확히는...
-
영어 거의 1,2나오는 현역인데 다시 감좀 기를려고 모고 풀려는데...
-
세상은 문과가 움직이는거지 뭔 공따이 따리가 세상을 바꿈 그니까제발고공빠져주세요ㅜ
-
문과 밑에서 일해라 공돌이들아!!
-
대학생이면 cc한번쯤은 해봐야하지않겠나 근데 별개로 헤어지면 좆같은건 맞음ㅋㅋ
-
수학 엄정 커리 ㅋㅋ
-
애초에 과학이 싫어서 문과왔는데 물리를 하라고? 이건 불가능함 그러니까 결국 답은...
-
확통 1,2분들 4
경우의수,순열,조합 처음배우실때 머리 안아프셨나요?그냥 술술 풀리셨나요? 전 시발점...
-
세상을 굴러가게 하는 건 이과..
-
최종 최최최종으로 진학사 확인했는데 이제 반절 이상 지원했길래..믿을만한거겠죠?...
-
좋은 아침입니다 1
얼버기
-
연장자 배려좀
-
아너무좋아
-
그래서 초울트라슈퍼캡짱문돌이가 될거임
-
아 넷플릭스에 없네
-
한바퀴 돌려서 겨우 원상복구시켰는데 안멈추고 계속도는중
-
고2 모고 높2 나오는 예비 고3입니다 수1 수2는 학원에서 개념 나가는데 미적은...
-
너무 너무 너무 고민입니다ㅠㅠ 집독재할까 독서실 독재할까 노베... 지금 근 2주간...
-
안그래도 서러운데...
-
수능성적은 허수가 있고 유의미한 경쟁자 풀이 존재하는 반면 키는 극소수의 유전병을...
-
https://orbi.kr/00071193721#c_71193788
-
제가 문과협회 만들어서 문과 욕한사람들은 블랙리스트에 넣어서 치킨 안튀겨줄거임
-
짱이될거야 4
-
그냥 훌쩍 떠나고싶음
-
와플 먹고싶네 9
딸기생크림와플 낼 먹어야겠다
-
고2 10모 4 중반쯤인데 배성민t 빌드업 바로 들어가도 되나요? 맛보기는 들었을...
-
네녀석 넘지 말아야할 선을 넘엇어 난 이러면 참을 수가 없어 난 질투많은 여자야
-
앞치마 어딨어요? 된장찌개에 계란말이 하러 가야겠다
-
진학사말고는 볼줄 모름
-
마지막 학교 행사가 중학교 수학여행인걸
-
불쌍한 저에게 10만덕을 주세요…
-
ㅊㅊㅊ이라 해 발뻗잠이라 해 게이라고 해
-
왜인지는 몰라도 확통 경우의수배울때보다 훨씬 편하고 쉬웠다는.. 정의랑...
-
진짜 꾸준히 했는데 1년 조금 넘었는데 스쿼트 1rm 은 모르겠는데 대충 110?...
-
지금 상태는 합격이 간당간당한데 한 문제만 더 맞았으면 발뻗잠인데
-
몇 년 살아야할지 행복회로 돌리는 중
-
시범과외했는데 1
애가 시급을 한번 더 물어보는데 가능성있나?....
-
덕코 6
덕코.
-
사람들은 높은 확률로 자기 얘기 하는데 안달나있기 때문에 적당히 말 아끼면서...
-
ㅈㄱㄴ
-
저는 서울대 출신이 아닙니다. (ft. 국정원 출간) 2
*이 글이 여러분 인생을 바꿀 수도 있습니다. 딱 1분만 시간 내주세요. 저는...
-
진짜 절대로... CC는 말리진 않는다 (사실 말리고 싶음) 근데 과cc는 절대로 하면 안됨
-
수1 2
예비고2이고 고1때 수학 내신 겨우겨우 3등급 받고 모고도 턱걸이로 2등급 받는정도...
-
Theme[00] 썰글에서 제목은 읽되, 마지막 줄이 곧 첫줄이다. 1
오늘도 메인글로서 증명된 독해 이론
-
님들은 전여친이나 짝녀 특징중에 안잊혀지는거 뭐에요 12
젤 좋아했던거랑 별개로 계속 생각나는거
-
내 붕어빵 1
https://mymytest.com/bungbbang/ 이런게있너 이거 나옴
-
대입전형계획 본적있는데 걍 가관이였음 내신반영 비율 2배+다면심화평가랍시고 온갖...
-
시대 라이브반 0
아직 신청가능한가요?
확인했습니다
증명이 풀이의 발상이다. 참고하겠습니다. 고맙습니다.
근데 이승효선생님 강의는 어디서듣는거에요? 교재는 뭘 준비하면되나요
‘대치동 디오르비 현장강의’ 또는 비대면 ‘올라이브’ 둘다 가능해요. 올라이브로 신청하게 되면 네이버 밴드에 초대되고 라이브 및 동영상 수강가능합니다. 비대면은 할인이 된답니다. 교재는 현장에서 받거나, 밴드에서 pdf로 받습니다.
예비고2라 내년겨울에 수강하러갈게요 저도 지방러라서...
그렇군요. 수시러면 내신 잘 챙기고, 정시러라면 수능대비 빠를수록 좋습니다. 칼럼과 수업에서 또 만나요. :-)
어느정도 공부가 되었을때 듣는게 좋은가요? 처음 배울때는 아니죠?
디렉션과 상승효과는 처음 시작하는 학생들을 위한 수업입니다~ 특히 상승효과는 개념을 처음부터 수능식으로 잡고 시작하면 아주 유리해지죠. 실력지상주의는 기출공부를 각잡고 한적이 있는 학생들을 위한 심화구요.
수1을 태어나서 처음 배우는 중이고, 수2, 미적 배운적 없는데 그래도 들을수 있다구요? @.@
물론이죠. 개념 수업은 처음 배우는 학생들을 위한 수업이에요. 모든걸 처음부터 자세히 설명하고요. 수능에 필요한 것만 효율적으로 짚어주면서 바로 문제 풀수 있도록 만들어 드립니다.
수시로 등록할 수 있는.건가요? 몇 달 단위인지.잘 모르겠더라구요. 첨부터 듣고싶은데말이죠.
네 수시로 등록할수 있어요. 개념수업은 1-2월 수업 8주를 앞에서부터 수강하면 됩니다 :-)
선생님 수학 기출문제 2회독 3회독 때까지는 맞춘문제도 다시 푸나요?
네 맞아요. 틀린 문제 풀이 법을 외우는 것보다
1) 평가원 2) 최근 3) 쉬운 기출 문제를 잘 분석하는게 더 중요하다요.
어...? 전부 다 너무나도 공감되네요... 수능이 끝나고, 학생들을 가르치면서 칼럼에서 말씀하신 내용들을 정말 많이 느꼈어요
진짜 수험생 때 이렇게 한달만 공부했어도 30번 다풀었을거같다는 생각이네요
이렇게 가르쳐주는 쌤이 없었는데...정말 좋은 강의인거같네요