B형 30번이요
거리 함수 미분이 그렇게 복잡하고 미련한 풀이인가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이런 사람이 실제로 존재했구나 ㄷㄷ
-
고대 어문 하나 박고 다군 서강대 자전 될지는 모르겠지만 하나 박고 야수의 심장으로...
-
메디컬반수분들 0
이번에 어디가심 복학? 아님 레벨업..?
-
이어폰끼고 티빙보고있어서 못 들었는데 갑자기 섹스!! 섹스 뭐에요?? 들려가지고...
-
근데 여러분 업소 한번은 어쩔수없이 가는경우 있음 14
상사가 막 너무 좋아해서 야 내가 쏜다 가자 하는데 이거 안가면 야이새끼야어 감히...
-
논술 남았는데 9시간씩 자는 중…
-
그 공무원들이 꽤나 자주가나보더라고 행시합격자랑 술한번먹었는데 취하니까 자꾸 나보고...
-
카르텔 ㄷㄷ
-
설대 물리학과 면접 틀린거 말해도 붙여줌???ㅠㅠㅠ 1
2개정도 말같지도 않은 소리를 했는데ㅠㅠㅠㅠ 쉬운 개념에서ㅠㅠㅠㅠ 정신이 나갔나ㅠㅠㅠㅠㅠ
-
3수는 누구나 다 하는 것 같고 4수부터 비로소 장수생인 것 같음
-
이원준쌤 안듣지만 이 말은 담아두는중
-
ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠ 물천인데 걍 완전 사오정에 틀린 개념 말함ㅠㅠㅠㅠㅠㅠㅠㅠ
-
올 수능 2등급이고 평소에 가끔 1나오기도 하고 보통 2등급 중반 정도 나오는데...
-
로씨행,공무원 준비할 생각 없으면 솔직히 급간 높이려고 공대버리고 교차? 오바라고...
-
배수진 치고 쌩4수 하면돼~
-
시발점 렛츠고 1
우진이한테 현혹됨
-
패히로 야나미
-
물리 2컷이면 동홍~국숭아 무리인가요? 세단은 안정일까요ㅠㅠ
-
게임, 애니, 넷플 등 아무거나 컨텐츠 좀 부탁드립니다 하루종일 옯질하고 잠만 자니 지루하네요..
-
아주 발악을 했는데 이젠 4시간 5시간만 자도 눈이 떠져서 잠이 안오네 4시간...
-
여기를 3초만 바라보세요 그러면 고닉 "시즈카" 에 대한 기억은 사라집니다 1 ....
-
예전에 그 드릴드드 성대모사 보고 개쪼갰었는데
-
과잠ㅇㅈ 26
애니메이트 가야지
-
의과대학, 그리고 설포카 공과대학 그정도 말고 현재 대학의 교육으로서의 역할은...
-
얼리버드 기상 7
-
내신은 고대가 반영한다는거 계산해보면 1.4초중 까진 나옵니다 어디까지 될까요?
-
잇올에서 짐 싸고 마지막으로 메가 대성에 들어가보는데 그동안 앞다투어 올라가 있던...
-
아가 기상 3
안뇽안뇽
-
가채점 = 실채점
-
제 주변에는 일단 다 미적에서 꼬라박았던데 생각보다 정답률이 높아보여서..
-
진짜 수헁 급한데 미적분의 힘이라는 책읽고 내용 요약했는데 수학적 오류가 있을지...
-
근의 분리는 이미 박살 났지않았나 240913인가 240613인가 둘중하난데...
-
죽을까
-
나는모자란사람인듯 수학만좀올라가면소원이없겠다
-
웃기다 ㅋㅋㅋ얘들 진짜 혹하겠네
-
메가에서 공통1틀 96점 백분위 100 예상해주고 있는데 9평 100이 99였는데...
-
고1 수학의 중요성은 정말 높은듯 다들 그냥 각잡고 수 상 해도 2
손해 없다고 봄 나는 내 과외 커리에 수상을 따로 합니다 얘들 수원수투풀면서 본인이...
-
주로 어디에 분포되어 있는걸까요 ?? 문과 최상위권은 미적/기하 선택으로 많이 이미...
-
지금 심찬우쌤 프리패스를 구매 했는데 이거 사면 앞으로나오는 강의들도 다 신청 가능 한건가요?
-
이건 재밌는듯 웃길려고 안하는듯하면서 웃길ㄹ려고하는거같은 현우진의 화법 이 사람 개극욕심 엄청남
-
상하차 끝! 9
내일도 근무를...하 끝나고 먹은 식혜는 캬 하고 나올정도로 값짐
-
2015 개정교육과정 수능을 봐야 하는 예비 고2입니다. 개정 시발점을 사서...
-
모두 기를 넣어주세요!!!
-
허허 3
나자신 오늘도 작작 잠자자
-
훈련시작 전 9
오늘 춥다
-
선예매도 실패하고 돈도 없네
-
2년전인가? 그때 3만원이였는데 오늘 살까 하고 들어가보니까 7.7만원이네 ㄷㄷ 뭔...
좋은풀인데 누가그러나요
별로 복잡하지 않아요 그렇게 풀어야 제일 명확하고요
법선을 이용한 풀이는 엄밀하지 못한 풀이인가요?
거리식 미분에 비해 계산은 간결한데,,, 뭔가 명쾌하게 답인느낌이 안들어서(일단 맞기는 맞았습니다만은...)
엄밀한데...
고교 수준에서 엄밀하지 않은데 직관적으로 충분히 해볼만한 타당한 추론이다
이게 맞는말입니다.
점에서 원의 반지름을 늘려가다보면 접하는 점이 거리가 최소일 것이고 , 원에 외접하므로 그 점을 지나며 원에 접하는 직선은 점과 원의 중심을 잇는 선분과 수직이므로 ~~ 비약인가요?
그냥 고등학생 입장에서는 시중문제집을 풀 때 필요한 직관적 사고 요소중 하나다 이정도?
다만 이 부분은 시중문제집으로부터 습득 후 암기된 사고인 것 같습니다. 라그랑주 승수법이라고 있어요 ㅋㅋ
http://blog.naver.com/mindo1103?Redirect=Log&logNo=90154212128
참고하시면 될듯 합니다.
와 역시 수학전공이시라 그런가 다르네요 ㄷㄷ 배우고 갑니다
저도 그렇게 생각하는데 다른 풀이를 하신 분들이 그렇게 풀면 계산이 복잡하다고들 하셔서;;
법선을 이용한 풀이가 엄밀하지 못한 건 아니지 않나요?
한 정점과 어떤 곡선의 한 점을 이은 직선이 그 곡선 위의 점에서의 법선이 될 때. 그 거리 함수는 극대 또는 극소입니다.(그중 최대, 최소도 있겠구요.) 결국 법선을 이용해 구해서 여러개가 나오면 비교하면 되는 것 아닌가요.
그리고 법선으로 풀면 계산은 정말 간단하게 나오는데.;ㅋ
아.. 폐곡선이 아닐 수가 있어서 법선으로 거리의 최댓값을 구한다 하면 엄밀하지 않을수도 있다고 생각 할 수도 있지만 주어진 문제는 최솟값에 해당하는 점을 주었잖아요. 그럼 엄밀한 풀이가 되지 않나요?
왜 법선으로 풀었을 때의 점이 항상 최소가 되는지 이 점이 증명되어야지 엄밀한 풀이라고 할 수 있지않나요
문제 이해하고 바로 이걸로 손이 스사샥 움직이니까 스르륵 금방 나오지 않나요? 거리가 루트 씌워진 다항함수로 나오니까 그 다항함수를 미분하고 s=2/3를 대입하면 값이 0이 되고 그 때 t와 미분계수를 샤바샤바해서 넓이 식에 대입하면 k가 땋! 하고 나오는 거 문제 이해하니까 그렇게밖에 될 수 없구나 라고 생각했는데