지금당장~~ 풀어주세요 ㅠㅠ
일단 역행렬 식이 ㅇ 이 안되는 걸로 식을 세워도 (-a+b)cos세타 는 1이 아니다 잖아요 여기서 어떻게 풀어야할지를 모르겠어요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
밥묵고 0
8시부터 피눈물없는 공부머신을 가동해보쟈
-
몇시부터 여나요? 지금 가봤는데 불 다 꺼져있네;;
-
기기기상 1
-
열시에일어나야지 1
내맘대로수면패턴~
-
미지근하면 정말 양배추맛 남
-
사실 띄엄띄엄 아침에 러닝뛰었는데 수능날 안뛸거면 지금부턴 걍 하지말까요?
-
진짜 상상할수 있는 최고의 시나리오로 이겼네 이걸 실시간으로 못봐? 하 ㅆㅂ
-
화작 75분 87점 16,21,27,30,38틀 독서론 5분-ㅇㄴ 나만 이거...
-
존밤되세요
-
슈퍼아이돌이면서 현역 정시로 인서울 대학 간 지헌 누나와 5시간 동안 스터디윗미
-
하아 도파민 과다분비 돼서 잠 못자고 여기까지 와버림
-
아니 어떻게 “다음주” 목요일이 수능이야
-
역대급 캐리판 ㄹㅇ
-
페이커 저 새끼 45세트에 한 것보다 더하라고? 오히려 슌 엘크가 45세트 뒤지게...
-
오늘 실모 보실거임?
-
월즈오면 LCK팀 응원할수밖에없음 ㅋㅋㅋㅋㅋ
-
근데님들 만약애 21월즈때 티원이 담원꺾고 올라갔으면 3
그때 EDG이겼을거같음?
-
4세트 엘크가 성장잘한거 집어던져서 5세트까지 간거고 5세트 빈 느낌없고 온 똥구멍...
-
공통 다 맞을 수 있겠다는 근자감이 드네 ㅋㅋㅋ 제발 25수능수학 공통1틀 미적...
-
ㅅㅅㅅ
-
7번이 진짜 딱 좋을듯
-
닉변완. 3
-
쓰리핏 탐나네 ㅋㅋ
-
ㅈㄴ 무서운데?
-
스킨 후보 10
ㅇㅇ
-
린킨파크 한번만 봐준다 ㅋㅋㅋ
-
아진짜못참겠네 4
헤으응
-
월즈 스킨 예측 6
우스우스: 그라가스 오 너는 최고야: 신짜오 신: 갈리오 or 아리 or 사일러스...
-
나만 그런거 아니지? 걍 지금 씻고 독서실이나 갈까..
-
수능은 티원처럼 7
수능날에 최고점 찍자고
-
캬
-
어 상혁이형이야 0
.
-
건국대 1
건국대 자전 추합 몇번까지 빠질 것 같나요??
-
뭐해? 1
올려
-
실모 풀었는데 둘다 3n점대 나와요...ㅎ ㅠㅠㅠ 수능때 2등급이라도 받고싶은데 걍...
-
아예 버려도 괜찮나요 ?? 이거 버리면 남은 문제는 다 맞아야 하는데 요즘 세포분열...
-
지들 졌다고 시위하는건가 추하네 좀 ㅋㅋㅋ
-
초딩 때부터 게임대회 관심 생겨서 응원했는데 16년 우승보다 지금이 더 기분 좋음...
-
4시드 미드 십캐리 결승 패승패승승
-
23년 3세트 징동한테 무난히 끌려가다가 질뻔한거 토스로 세계선 바꾸고 24년...
-
럭스한적있음??
-
아 개귀엽네ㅋㅋㅋ
-
1사람당 10만덕 댓글 ㄱㄱ혓!
-
대가리 깨러간다 뭐? 국제전 7년 무관? 뭐? 물로켓? 응 월즈리핏 ㅋㅋ
-
초중반 운영은 blg가 훨씬 잘한 것 같은데
답은 7아닌가요?
죄송한데 답을 몰라요 ㅠㅠ
근데 보기에있네요 ㅎㅎ 어떻게 푸셨어요?
7맞는듯 보기에도 있으니ㅎㅎ (-a+b)cosθ는 1이 아니다 까지 나오셨으면 이제 가만히 생각해봅니다. 이런 생각 계속 해보는게 중요해요. 틀리면 개쪽이지만...ㅎㅎ-1<=cosθ<=1이니깐 (-a+b)는 -1초과 1미만 이여야해요 그러니 그래프 그리면 -1=<(-a+b)=<1 이거랑 문제 조건이랑 맞춰풀면 되요ㅎㅎ
감사합니다~~~
죄송한데 답을 몰라요.....
근데 보기에 9는 없네요....ㅠㅠ
보기는 4 / 7 /11 /15 /18
7맞네요 ㅋㅋㅋ ㅠㅠ 전 cos세타의 범위가 -1에서 1까지니까 (b-a)cos세타는 1이 아니다에서 (b-a)로 나눠줘서 (b-a)분의 1이 -1과 1사이에 안겹치도록 하는 부분을 찾았는데
근데 값이 0일지도 모른는데 마음대로 나눠줘도되는건가요????,,,, 제가 배운바로는 마음대로 막 나눴다고 틀린적이 몇번 있어서 ㅎㅎ
보통 나누는 방법은 님말대로 별로 추천하는 방법은 아닙니다. 허나, 0일 때와 0이 아닐 때로 나눠서 풀 수도 있고 그렇게 풀어야하는 문제도 있습니다. 하지만 이 문제처럼 나눠서 풀 수도 있는 문제는 나누는 것은 귀찮고 틀릴 수도 있기 때문에 비추입니다. (프리랜서님은 그 부분에 숙달되서 자기 것으로 만들었기 때문에 그 방법이 더 쉬울 수도 있습니다.)
음 그렇군요 ㅎㅎㅎㅎ조언 고맙습니다~~
{A+COS(THETA)}{(B-COS(THETA)} = AB+SIN^2(THETA)
이 식을 전개합니다.
AB +(B-A)COS(THETA)-COS^2(THETA) = AB+SIN^2(THETA)
이 식에서 삼각함수가 일차인형태는 cos뿐이므로 우변의 sine함수를 cosine함수로 바꿉니다.
소거까지 해 줍시다.
(B-A)COS(THETA)-COS^2(THETA) = 1-COS^2(THETA)
그러면 (B-A)COS(THETA) = 1이 아니라는 결과가 나옵니다. 말씀하신것 처럼.
'THETA값에 관계 없이'라는 말에 주목해야합니다.
원래 COS이라는 함수는 주기함수이면서 최대값과 최소값을 가지죠. 여기서 알 수 있는것은
B-A가 0이어서 좌변이 항상 1이 되지 않거나, B-A의 절댓값이 1보다 작아서 1에 도달할 수 없게 만들면 됩니다.
따라서 그림을 그려서 넓이를 구해보시면 16-9=7이 나오겠죠
오 이해가 잘되었어요 ~ 이런 논리적인 풀이 마음에 드네요 ㅎㅎㅎ
감사합니다~
B-A가 0이라는것도 결국에는 저 영역에 포함이 되니 상관은 없지만, 위에서 말씀하신대로 마음대로 나누어서는 위험할 수 있기 때문에 꼭 짚고 넘어가셔야 합니다.
맞아요 저런 이거나 같은 것은 꼭 챙겨야해요
저 범위에 포함이 안됬었으면 더재밌는 문제 였겠네요 ㅋㅋㅋㅋ