문제풀때 개념 질문드려요..
수1복습하는중에 지수방정식3^(2x) - 3^(x+1) = a가 서로다른두실근을갖도록하는 a값의 범위를 구하여라. 라는문제였는데요
다른문제에선사용하지않던판별식개념을 저문제에만 판별식을사용하더라구요.. 풀이를봐도 뜬금없이 판별식으로 양의두실근을갖게하는범위도 답에 추가되길래 이해가안됐었는데
서로다른두실근 이란 말땜에그런것같아요.. 그 조건을 추가하지않아서 틀렸는데 문제풀때저런조건을자주놓치는데 고1수학개념이 좀부족해서 문제풀이할때 고1수학개념을끌어와야되는문제는 자꾸틀리는데요ㅠㅠ
고1수학개념완벽하게다시복습하는게나을까요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
19)님들 질문 있음 26
히토미 번호 가지고 오르비에서 히토미 티어표 작성하면 음란물 공유로 처벌받으려나
-
충남도·대전시 행정통합 추진 선언…'슈퍼 광역도시' 만든다 1
(대전ㆍ충남=뉴스1) 이찬선 기자 = 충남도와 대전시가 행정구역 통합을 향한...
-
국어 비문학 지문을 이해없이 풀 수 있지 않을까요? 16
그동안 기출 보면서 푼 문제들 사실 생각해 보면 이해란게 전혀 필요하지 않은 것...
-
솔직히 거기서 거기같긴 한데
-
님들 이미지 3
-
선넘질받 23
대답 꺼려지는 질문 하시는분께는 천덬 드릴게요 신상X
-
질받 해볼게요 6
선넘도 ㄱㅊ 내일 논술 기념..
-
ㅇㅇ
-
최저만 되면 진짜 면접 평타만 쳐도 붙을만 한데 국어 진짜 제발
-
ㅇㅈ 10
에도 없다! 연세대학교 경영대학교
-
시청한 애니로 애니티어표 만들기가 취미인데 지금 1위 자리를 두고 봇치랑 빙과가...
-
특정되서 오르비사람들이 저의진짜모습을알게될까 무서워요...
-
서버 터진다 이런 건 걍 말도 안 되는 소리고 ㅋㅋ 걍 실친이 내 오르비 계정 알게...
-
왜 결말이 ㅂㅅ같냐 강연금같은 명작은 없는건가… 걍 럽코 적당한 거 보는게...
-
얼굴ㅇㅈ하면 8
념글 보내주나요?
-
댓글 20개 이상 찍히면 대존잘인거임 ㅇㅇ 물론 여성분들은 대존예까진 아니어도 그정도 찍히긴 함뇨
-
옯만추 딱 5번해봄 11
5명다 짤녀 닮은 미소녀였음
-
이공계 질문받아요 31
슬슬 학교/학과 선택 질문이 좀 보이네요 저는 서울대 공대/자연대에서 썩고 있는...
-
우하하 4
새르비 재밌누
-
한완수 ㄱㅊ? 5
재종 들어가기전에 한완수 하려는데 괜찮음? 수학 3따리 턱걸이라 걍 노베임 교과개념부터 할까요?
-
댓글 너무 달려서 오르비 서버 터질까봐.
-
념글보내줘 6
갈거업ㄱ잖아딱히
-
와 화력개빡세네 2
인증하면 세상사람들 다알겠다
-
삼수망한후기 16
삶에대해다시생각하게됨 사소한것에감사하게된 게아니고그냥계속화남 억울함 사수하고싶음...
-
ㅇㅈ 16
펑
-
멍청한사람이싫어요 18
그래서내가싫어
-
나때는 악뮤온다
-
난 그냥 공군 안가야지 10
여붕이라 안가도 됨 ㅇㅇ
-
2학년 모고 과탐을 지금까지 계속 화생으로 봤는데 수능때 도저히 화학 볼 자신이...
-
책 읽어야지 6
도 공공도서관에서 대여가 가능하더군요. 너무 비싸서 무료로 대여해 주는 공공도서관...
-
ㅇㅈ 13
아까 퇴근하면서 찍은거 ㅇㅈ 카메라 풀린거 너무좋고
-
총수라는 말은 12
야하다고생각해요
-
책 ㅁㅌㅊ 6
집에한가득w 시선으로부터는 사인도잇어요 알라딘에서냅다업어옴
-
잠은 좀 이따 잘 듯 싶어요
-
짜증나... 8
갈래
-
난 처음들어보는데 다들 아네..
-
책읽어요 3
재밌을거같아요
-
모썩철썩! 애응님이 그립네요 뭐 재르비해서 이 글 보고 있을 수도 있겠지만
-
아니 뭔가 별로 긁힐만한게 아닌 거 같은데 나도 모르게 묘하게 긁힘
-
남1여1해봣는데 둘다잘맞아서아직도실친으로지냄
-
ㄷㄷㅇㄷ 6
ㅓㅔㅠㅔ
-
진짜 고민됩니다 예비고3이고 가고싶은 대학이 정시로만 갈수있어 정시 준비중입니다....
-
그냥 찍는거? 아님 잘 맞춤?
-
20분 내에 개념 다 풀고 10분 내에 도표랑 도수분포표 풀기 도전!
-
지금 인사하면 받아줌? 24
-
씻고 옴
-
무려19시즌이엇다구 나보다오래햇다고??? 현생살아... 나도가끔오잔아
-
탐구 안보고 국수영 반드시 세과목 모두 222 이내로 들어와야해요 수학 선택...
-
집 도착 9
-
이미지 써드림 go 72
귀찮아지면드랍함
3^x = t 라고 두면 문제의 식 --> t^2 -3t -a = 0 이 됩니다.
원래의 식에서 x가 서로 다른 두 실근을 가지게 된다는 것은, t에 대한 방정식에서 t가 서로 다른 두 양의 실근을 갖는다는 것과 동치입니다. (3^x = t 라서 t는 항상 양수이므로..)
따라서 t^2 -3t-a =0 이 서로 다른 두 양의 실근을 갖을 조건을 찾는 문제입니다.
f(t) = t^2 -3t-a 라 할 때,
1) 일단 y=f(t)라는 이차함수가 최소한, 서로 다른 두 실근을 가져야 하는 것은 당연하므로 (양의 실근도 실근이니까요), 판별식 > 0 이 필요합니다. 9+4a>0
2) 서로 다른 두 실근을 갖는 것만으로 양의 실근임을 보장할 수 없습니다. 양의 실근이려면 이차함수y=f(t) (아래로 볼록)가 t축 아래로 내려가는 부분이 1,4사분면쪽에 위치해야 하므로 축의 방정식 t=3/2 의 그래프가 1,4사분면쪽에 위치해야 합니다. 즉, 3/2 >0이어야 합니다. 근데 이는 이미 자명히 성립합니다. (여기서는 새로운 조건식이 안 나오지요.)
3) 끝으로 '축이 양수쪽에 있다, 판별식이 양수다' 라는 조건 만족한다해도, f(0) = -a 가 0이하면 안 됩니다. (그러면 0 이하의 실근도 가져버리니까..) 따라서 f(0) = -a >0
1,2,3)으로부터 -9/4 0라는 조건을 암묵적으로 남기니까요. 이런 조건을 잘 캐치하시면 될 거 같습니다. 그리고 이차함수 그래프 배치 테크닉도 문제를 몇 개 풀어보셔서 잘 익히시는 게 좋고요.
개념을 완벽하게 복습하시는 것보다, 이렇게 문제를 풀면서 모르는 부분이 나올 때마다 그 개념 하나하나만이라도 완벽하게 익히자.. 라는 마인드로 하는 게 더 좋은 거 같아요. 모르는 게 조금 나왔다고 '아.. 다시 첨부터 다 복습해야 하나..' 이렇게 생각하지 마시고, '일단 이 부분만이라도 잘 이해하자..' 생각하고 해보세요. 물론 그 부분의 개념만 이해하고자 해도 더 앞부분을 일부 더 공부해야 하는 경우도 있으니, 그 정도까지는 보셔야겠지요. 괜히 전범위 복습하자라는 생각으로 가면 상당수 학생들이 많은 분량 앞에 공부 의욕만 꺾이게 되는 경우가 많은 거 같아서 하는 말입니다. (결국은 학생 개인의 의욕과 능력에 비추어서 따져봐야겠지만 대체로 저는 이게 낫다고 생각합니다.)
매번감사합니다 syzy님 괜히집까지걸어가서 고1교과서들고와서 집합부터보고있었네요..
근데 고1교과서를보면서느낀점은 판별식부분과 이차함수부분을 다시봐도 교과서랑 개념서에있는부분은 이미 제가 알고있던부분이였습니다 그러나 저런식으로 이 조건을 걸어서 문제를 풀어야할땐 아니왜이렇게풀었지? 라는상황이될수밖에없네요ㅠㅠ 이런점은 일단문제를많이풀어보고 틀려보고 왜틀렸는지확인하는과정에서 말씀하신관점으로접근해서캐치해나가야되는건가요?