2020년 10월 모의고사 수학 가형 30번 해설
오늘은 한달 전 시행됐던 10월 모의고사 수학 가형 (이과) 30번 문제 풀이방법에 대하여 알려드리겠습니다.
단순히 한 문제에 대한 풀이로 마치는 것이 아니라 문제를 푸는 근본적인 방법에 대하여 조언해드리니, 킬러문제가 고민이신 분들은 꼭 칼럼을 꼼꼼히 읽어주세요.
먼저 2020년 10월 모의고사 수학 가형 30번 문제를 소개합니다. 아직 문제를 풀어보지 않은 분들은 반드시 풀이를 보기전에 스스로 문제를 풀어보세요.
다음으로, ebsi에 수록되어 있는 공식 풀이방법을 소개해드리겠습니다.
물론 쉬운 문제는 아니였습니다. 그러나 킬러문제중 가장 어렵기로 유명한 30번의 평균 난이도를 고려하면 다른 30번들 보다는 쉬운 편이라 할 수 있습니다.
따라서 30번에 도전하려는 마음가짐으로 이 칼럼에 들어오신 여러분들이라면, 스스로 풀지는 못했더라도 답지 풀이 정도는 충분히 이해하실 수 있을 것입니다.
그러나 항상 가장 중요한 것은 단순 이해를 넘어서, 비슷한 문제가 나오면 내가 스스로 풀 수 있을지, 풀이를 온전히 내 것으로 만들 수 있을지 생각해 보는 것입니다.
지금부터 풀이과정을 하나씩 구체적으로 살펴보며 풀이를 여러분의 것으로 만들 수 있도록 도와드리겠습니다.
첫번째로, f(0) = f(-2)임을 문제에서 제시했습니다. 이차함수이기 때문에 숙련된 분들은 성질을 이용하여 f(x) = kx(x+2) + q 라고 바로 잡을 수 있을 것입니다.
그러나 제가 바람직하다고 평가하는 합리적인 풀이는, 공식 답지처럼 조금 돌아가더라도 "누구나 생각해낼 수 있는 아이디어"입니다.
따라서 바로 식을 잡기가 어렵더라도, f(x)에 0,-2를 대입하여 식을 전개해도 전혀 문제가 없으며 동일한 결론을 유도해 낼 수 있습니다.
첫번째 과정을 통하여 p를 k에 대하여 나타내는 데 성공했습니다. AB < 0 의 형태가 나왔네요. 따라서 두번째로 -1을 기준으로 x 의 범위를 나누는 것은 당연합니다.
아마 대부분의 분들이 아직까지는 의문이 들지 않을 것입니다. 문제는 다음 파트에서 발생합니다.
풀이 자체를 이해하는 분들은 제법 계실 것입니다. 그러나, g'(-1)=-2을 구하는데 갑자기 g', g"을 구하는 이유는 무엇인가요?
그리고 비슷한 문제가 나왔을때 우리는 똑같이 논리를 전개하여 문제를 풀어낼 수 있을까요? 지금부터는 합리적인 논리 전개 방법에 대하여 말씀드리겠습니다.
첫번째로, 우리는 우리가 유도한 이 식을 어떻게 사용할지 고민해봐야 합니다. g(x)가 x = -1의 전후로 mx+m이라는 식과 부호가 바뀌려면 어떻게 해야할까요?
우선 x에 -1을 대입해 g(-1) = -m+m 값이 나와야 합니다. 그래야 부호가 바뀔 수 있는 최소한의 조건이 만족됩니다. 즉 첫번째 식 g(-1) = 0 이 유도됩니다.
그러나 여기서 우리는 하나의 식을 더 생각해내야 합니다. 왜냐하면 g(-1) = 0 은 필요조건일 뿐이지, g(-1) = 0 이라고 해서 주어진 부등호가 반드시 성립하는 것이 아니기 때문입니다.
여기에 식을 만족시키려는 m의 최소값이 2라는 힌트가 주어져 있습니다. 즉 이 식을 이용하여 추가 조건을 구하라는 것을 깨달을 수 있습니다.
저는 이후의 풀이는 공식 풀이와는 조금 다른 방식으로 해결했습니다. 생각해보세요. -1을 기점으로 mx+m와의 대소가 변하려면 어떻게 해야할까요?
반드시 그림과 같은 형태가 나와야합니다. 즉 함수값이 같은 것 뿐만 아니라 반드시 m이 g'(-1)보다는 크거나 같아야 한다는 것이죠. 이때 m의 최소값이 -2이므로, g'(-1) = -2 가 되는 것은 자명합니다.
이제 두 식을 연립하여 다음 식을 유도할 수 있습니다.
이 식은 문자 3개, 식1개의 형태입니다. 즉 2개의 식만 더 있으면 문제를 풀어낼 수 있습니다. 이제 (나)식을 한번 살펴볼까요?
(나) 조건은 딱 두개의 식을 구할 수 있도록 되어 있습니다. 또한 g(x)는 지수 위의 식을 미분하면 아래의 함수가 나오는 형태기 때문에, 매우 적분하기 쉽습니다.
따라서 이제 문자 3개, 식3개, a,k,q를 모두 구할 수 있다는 것입니다. 문제의 풀이를 단순히 쭉 읽어봤을때는 스스로 풀기가 어렵다고 생각할 수 있습니다.
그러나 하나씩 과정을 살펴보며 왜 이런 아이디어를 사용 할까?에 초점을 맞추어 복습을 한다면, 문제를 푸는 것이 점점 쉬워진다는 것을 느낄 수 있습니다.
여러분들 스스로도 "내가 왜 이러한 방식으로 논리를 전개해나가고 있을까" 라는 질문을 스스로 던지며 문제를 풀어보세요. 근본적인 실력이 크게 향상될 것입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
교재비 포함 20전후로 생각하면 되나요??
-
왓~삐~ 0
-
메가대로만 나와도 소원이 없겠다... 71 70 이야기가 왤케 많냐 ㅜ
-
기출은 거기서거기 맞나요 원솔멀텍 vs 기출생각집 vs 수분감 너무 고민되어서요
-
언매 85 (61+24) 확통 63 (47+16) 최저 때문에 피가 말라요
-
못참겠다 저격함 17
-
빅괴군 보고가 2
OUT
-
오늘의 우리를 기록해 어제의 우리를 위로해 내일의 걱정은 뒤로해
-
정법 1번, 사문 11번 개쉬운문제들 정답 4고 기억도 나는데 가채엔 3이라...
-
수영장파티케틀 1
슴
-
얼버기 16
모두 좋은 아침
-
원인있음의사난수 원인없음진성난수 제1원인은->원인없음 제1원인은->진성난수...
-
귀여워! 12
-
3,4등급 애들은 재수 어디서 함? 시대 강대 미만 다 비슷함? 3,4등급 재종기숙 추천좀
-
페북느낌난다
-
오디다가 하시나용
-
모닝여캐투척 21
짠
-
'현장감' 이 차이가 정말 큼 화작은 아무리 어려워도 공부가 잘돼있다면 시험장에서도...
-
부산대 인문논술 0
부산대 인문논술 3-2 소문항 한개 못적었으면 무조건 탈락인건가요? 앞에껀...
-
https://naver.me/GpC6rq15 이지랄 ㅋㅋㅋㅋㅋㅋㅋ
-
대 리 런 4
약코 GOAT
-
그때부터는 꿀이 아니라는거군요 그럼 존버가 승리하는것?
-
인스타 릴스에 중드 계속 나오는데 찔끔찔끔 보여주고 딴데선 못찾겠어서 정신이 나갈것 같음
-
아니면 따로 낙지에서 만든 변표공식이 있나요?
-
야채음료 먹음 2
오늘 먹을 메뉴가 다 야채가 부족해 이거라도 먹어야지
-
한국국립대학교??? 11
너무 보통명사 아닌가 얘네 이걸로 이름 바꾸려고 이러는 것 같은데 흠?
-
얼버기 5
-
아오 습해 1
비와서 축축해
-
세상은 올바른 선택을 하는 것이 그 무엇보다도 중요하다는 것.
-
슬슬 자볼까 1
겉날개얻고 몬스터팜 만들었으니 꿀잠자러 고고
-
얼버기 4
인녕하세요
-
지금까지는 맞는말같긴함 작수때 언매미적물1지1으로 89 89 2 88 95 맞았는데...
-
워드마스터2000 끝냈고(3회독) 암기율은 80정도? 제가 단어가 약헤서 다른...
-
힘을 좀 내줘 씨발럼아!!
-
영어 과외 질문 0
고등학교 3년 내내 모고 1등급은 놓친 적이 없고 수능은 97점 나왔습니다. 올해...
-
아침 먹으면서 쿵짝짝 쿵짝짝 하면서 토스어플 딱 까봤는데 떡락한 거 보고 나이스...
-
진단서 써줌? 기말 끝나고 링거 맞을건데 병원에서 진단서 써주는지 궁금함
-
군대 안가면 좋겠다는 말도 안되는 망상을 해본다
-
저 남르비예요.. 오해하시는 분들이 많으신 것 같길래
-
하나 사고싶은데... 비싸...
-
얼버기 0
우헤헤
-
아 어제 할껄 4
비 오고난 후 추워질텐데 역시 할 일은 바로바로 해야 해
-
사실 출근안했고 아침먹는중임 가기싫다
-
이거 좀 답해줘 3
9시 수업있는데 원래 2시 수업도 있는데 싸강됨.. 귀찮은데 걍 모자쓰고 갈까??...
-
아학교가기싫어 6
비는 또 왜 오는건데ㅠㅠ 지금 결석할지말지 고민즁잉대ㅜㅜㅜ
-
헤헤
-
곧 7시가 되기 때문입니다 오늘도 파이팅
-
뻘소린데 0
요즘 물가에 질식할 것 같음 걍 날 죽여라
이따가 공부 끝내고 읽어볼게요