[이동훈t] 9모 가형 20번 근사적 풀이
안녕하세요.
이동훈 기출
수능 수학독본의
이동훈 입니다.
9모 가형 20번의
그래프의 개형을 이용한
근사적인 풀이에
대한 문의들이 있어서
해설지 작업이
아직 다 끝나지 않았지만
일단 올려봅니다.
y축에 대한
정적분/구분구적법이
아니냐 ...
라고 말하면 할 말 없긴 한데.
이과생이라면
이 정도는
납득 가능한 수준이라고
생각합니다.
그리고 합성함수의 그래프의 개형을
잘 ~
그리면
위와 같은 엄밀한 계산까지
할 필요도 없겠지요.
이번 주안에 해설지 업로드 하겠습니다.
감사합니다 ~~ :)
ㄱㄹ
2ㅁ
.
.
.
가형 20번의 분석이 마음에 들었다면 ~
2021 이동훈 기출문제집 오르비 atom 책 페이지 (아래)
2021 수능 수학독본 수학2 (전자책)
https://docs.orbi.kr/docs/7636
2021 수능 수학독본 미적분 (전자책)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
23수능 미적 0
이때 풀면서 걍 ㅈㄴ 쫄렸음 14번 얼탱이 없는애가 갑자기 튀어나왔는데 ㄷ이 진짜...
-
나이차vs외모 0
10살연상 존예vs 나이차얼마나지 않는 평범녀
-
응애 컴공 갈꼬야
-
지금 강기분 토오전반 대기번호 520번대에서 3주만에 251번으로 줄었는데 개강전에...
-
세개 다 현장 응시 23>>24=25 23수능을 넘는 수학시험은 앞으로 안나올거같음...
-
더 친절한가요 아무래도
-
생각해보셈.
-
25수능 수학 틀린 번호는 15 20 21 22 (미적) 27 28 29 30...
-
언미물지 93 87 2 85 84 언미물지 89 95 2 97 66 화미정사 93...
-
보면 사람들 물타기도 심하고 정답을 정해놓고 사고하는 것 같음
-
어문에서 경영으로 복전하는 것만큼 경쟁률이 많이 치열해요???
-
올해 수능 44166입니다 화작 미적 생명 지구이고요 중학교 때 전교 1등으로...
-
GOAT
-
이시절 수학 진짜 좆같았는데 이때(23) 비해서 요새 솔직히 많이 쉬워졌다고 생각함
-
벌륨매직마렵 2
ㅗㅇ유ㅠㅇ우우웅
-
ㅈㄱㄴ
-
질문 받음 6
고졸 일용직 걸그룹 마스터 야구 중독자 (32년 무관 팀 팬)
-
화1 3 1
화1 42점 3될까요??
-
국어 85 수학 88 국어는 수능 기조 바뀐 후로 극복이 안 되네. 수능 기조...
-
넌 수능 봐라
-
뭐하지…
-
성적...? 헤으응
-
아는 지인이 오늘 서울대 수학과 면접 봤는데 면접 방식이 수학문제 풀기라는 거...
-
얘드라 하이하잉 4
-
재수 한국교원대 삼수 약대임 ㅋㅋ 지금봐도 ㅈㄴ 올리긴했노
-
차라리 생1지1을 하는게 낳아요 문과분들도 과탐런하세요~
-
목표는 중경외시였지만 이번수능은 경북대가 최대인거같네요. 대학 가더라도 한번 더...
-
ㅊㅊ
-
고데기했다 11
흐흐
-
지방메디컬은 사탐 허용 학교가 희귀함. 몇개 있다는데 일일히 찾긴 너무 많아서...
-
걍 투과목 표점 1
떡상하게 해주세요
-
그.. 대학을 안 물어보시고 전공만 물어보셔서 대답해드렸더니 오해를 산 것 같네..
-
파이널집 들으면서 늘 그 생각함
-
ㅠㅠ 우리엄마 6평9평보고 기대 많이 하시던데 하..
-
재수하는데 빨리 사서 풀고싶음
-
진짜 개망할뻔 했네 스토브리그 보는거에 몇시간이 지나가는거야 ㅋㅋㅋ
-
일단 저는 수능이 미응시처리 되었습니다 가천대 논술은 가보고 싶었는데 아쉽네요.....
-
3학년임
-
이렇게 추운 날에는 13
뜨끈한
-
반대로 전공과 무관한 일로도 먹고 살기가 가능한게 요즘인거 같음
-
안녕하세요 전역6개월남은 육군 군수생 입니다 22살 이고 내신 6등급 이였고...
-
잘 안팔렸나 당황스럽노.......
-
화학이 37 점이 나와버렷는데 3등급 가능할까요?? 논술 최저가 걸려 있어서 일단...
-
멍청한 나도 대충 괜찮게봄뇨
-
연논 1
어케될까요
-
니 인생이니 알아서 해라 대신 대학 졸업하는 순간 지원은 없다.. 어머니 감사합니다.. ㅠㅠ..
-
학교 면접 때문에 공강이었는데 강의실 온 사람은 뭐지 8
그런 사람이 나네...
-
물1지1 고려중 2
1. 물리가 좋아요 2. 과탐할거에요 3. 시대인재 재종은 너무 비싸서...
-
시험지 받고 파본검사할때 눈풀함
-
독학 재수 인강 0
23224(언미생지)입니다. 최대한 인강 빼고 해보고 싶은데 그럼에도 꼭 들어아햐는...
그렇습니다 ! 위의 그림에서는 직사각형을 그리지 않았지만, 각 쪼개진 선분을 밑면으로 하는 직사각형을 여러개 그려서 구분구적법으로 정적분의 값을 생각해본다면, 넓이가 점점 커지는 것을 관찰할 수 있습니다. 그리고 위와 같이 수식을 이용한 풀이 역시 짧고 간단합니다. 따라서 이 문제는 그래프의 개형을 이용한 근사적인 풀이까지도 열어두었다고 봐야 하겠습니다. :)
안녕하세요 선생님. 만약 sin(pi+sqrt(p))=sinsqrt(p)가 맞는지만 클리어가 되면 너무 멋진 풀이가 될 것 같습니다.
제가 지금 12시간동안 수학만 보고 있어서 뇌가 굳었는지, 이 부분이 맞는지 잘 모르겠습니다.
만약 sin(pi+sqrt(p))=sinsqrt(p)가 아닌 sin(pi-sqrt(p))=sinsqrt(p) 가 맞다면, 아마 부등식이 반대로 나와 보여지지 않는 것 같습니다.
가르침을 주세요 ㅎㅎ 좋은 관점 하나 배워갑니다 ^_^
(물론, y축 적분을 불편해하는 불편러들이 있겠지만, 수학적으론 매우 타당하니까요)
밥먹다가 문득 생각났습니다. 아마 간단한 오타 수준이었던 것 같아요. (메이비 부호실수)
잘 고치셔서 올려주실거라 생각합니다 ㅎㅎ 그 풀이는, 맞는 풀이가 될 거구요.
내일 쯤 제 글 상단에 선생님의 풀이를 같이 첨부하여 '이렇게 하면 개형풀이도 옳다.'라고 보여주고 싶어요!
저도 선생님같이 정확한 해설만 있는 기출서를 한번 써보고 싶은데, 언제가 될지..ㅎㅎ 리스펙합니다~
제가 처음에 올린 수식에 오타가 있어서 정정하였습니다. :)
사실 위와 같은 발상, 풀이는 대부분의 수험생이 시험 시간 안에 할 수 있을 것 같지 않습니다. 대부분의 수험생분들은 그래프의 개형 그리고 ... 왠지 이렇게 하면 답일 것 같은데. 이 정도에서 답을 구할 것이구요.(시간이 남는다면 계산으로 확인을 하는게 현실적이겠지요.) 더더욱 5지선다 이기도 하고, 수열의 규칙성이 짝홀에서 뭔가 벗어날 것 같지 않기도 해서 ... 1번을 답으로 할 가능성이 높겠지요. 출제자 입장에서도 그 이상 뭔가 더 꼬거나 함정을 팔것 같지는 않구요. 물론 수능에서 이걸 노리고 출제할 가능성이 없는건 또 아닙니다. 그런 식으로 난이도 높이는 시험이니까요. 그래서 위의 문제는 어디까지나 계산을 이용한 풀이가 첫 번째 풀이일 것입니다. 위의 풀이는 위험 부담은 있지만 시간 확보를 위한 것이구요.
댓글 감사드립니다 ~~ :)
네, 저도 같은 입장입니다.
학생이라면 둘 다 어느정도 허용한다. 약간의 확률을 믿는거지만, 다수의 직관이라면 어차피 틀려도 같이 틀리고, 1컷은 똑같이 움직일테니 상대적 손해는 없을거구요.
하지만 가르치는 입장에선 직관과 더불어 정확한 해법도 제시해야하잖아요~
아마 이동훈 선생님도 위와 같은 증거(?)가 없었다면, 단순한 직관 정도로만 소개/제시하고 넘어갔을거라 감히 궁예질을 해봅니다 ㅎㅎ 감사합니다.
모든 강사분들의 고민인것 같습니다. 직관에 의한 풀이, 엄밀한 풀이, 그림에 의한 풀이, 수식에 의한 풀이, ... 수험생마다 원하는 것이 다 다르기 때문에 학파 같은 것이 생기기도 하구요. 수능 난문의 경우에는 직관적으로 답을 미리 결정하고, 이를 어느 깊이까지 증명할 것인지가 항상 고민이 됩니다. 선생, 학생 모두 그러할 것입니다. 감사합니다 ! :)
역시나 같은 고민을..ㅎㅎㅎ '직관이 우선이며 진리다.' 라고 믿고 있는 학생들이 꽤 높은 비율로 있는 것 같은데.. 그렇게 같은 패턴으로 무너졌던 직관력 좋았던 고3 학생 출신으로써 정말 비추하고 싶네요ㅎㅎ 직관은 최선이 아니고 차선임을 꼭 알아줬음 좋겠어요.
좋은 저녁 되세요~
시험에는 조금이라도 의심스러우면 논리적으로 증명하는 것이 답이겠지요.
좋은 밤 되시길 ~ :)
합성함수를 잘 그리는 건 구체적으로 어떻게 그리는 건가영
합성함수 역시 함수이지요. (합성)함수의 그래프의 개형을 그릴 때에는
곡선이 지나는 점 (특히 항상 지나는 점)
어떤 점에서의 접선의 기울기로 오목볼록의 판단
이 두 가지만 잘 고려해도 예쁘고 정확하게 그래프의 개형을 그릴 수 있습니다. 이 문제의 경우에도 함수 f(x)의 그래프의 개형을 그냥 쫙쫙 긋는 것보다는 ... 점과 기울기, 볼록성을 판단하면 깔끔하게 그려집니다. 감사합니다 ~~~ :)
혹시 2022버전 가형 교사경은 언제쯤 나올까요?
3학년 학평이 끝나는 직후 (11월)이 될 수도 있고, 2학년 학평이 끝나는 직후 (12월)일 될 수도 있습니다. 아직은 고민중입니다. 늦어도 12월 내에는 출시됩니다. :)
2021 가형 이동훈 교사경 문제집이랑 2022가형 이동훈 기출 문제집이랑 문항 선별,배치 및 해설 등의 부분에서 큰 차이가 있을까요?
(2022 교사경 대신 2021을 구매해서 풀어도 될까요?)
2022 에는 2021 에 비해서 추가문항이 적지 않을 것이므로 가능하면 2022 버전으로 푸는 것이 나을 것입니다.(2022 수능을 대비한다면 말이죠.) 해설은 큰 차이는 없을 것이고, 문항 선별은 좀 달라지고, 배치도 달라질 가능성이 있습니다. 다만 2021 버전을 풀고, 여기에 올해 교사경 기출을 시험지로 풀고 하면 괜찮긴 합니다. 감사합니다 ~~ :)