고대 수리논술 2012모의
고대 2012 모의논술 에서 나온 수리논술 문제 있잖아요
답은 ''답이 없다'' 가 나와서 출제오류라던데
제대로 풀으려면 분자와 분모를 바꿔서 해봐야 된다는데
그러면 n x ( 2030 / 2031 )의 n승 으로 풀어야되는거죠?
이거 풀이법 아시는분?ㅠㅠ 저 식이 최대가 되는 n의 값을 구하는거예요..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
첫 여친이 너무 예뻐서 눈이 너무 높아짐..전여친 작품
-
공룡중에 누가 젤 센지 말싸움 붙으면 나는 꼭 티라노가 아니라 타르보사우르스라고...
-
왜클릭 이아니라너무많아서못적음
-
이번주 금에 만나기로 했슴 근데 내친구는 안잘생겼는데
-
3시 되기전에 무조건 깸. 단 한 번도 반례가 없음.
-
킹룡을 사랑하는 지과러로서 인터넷을 뒤지다가 대륙의 킹룡 영화를 발견함. 무려...
-
몸빼키 얼마가 적당할까 11
-
있다던데 이름 개웃김 ㅋㅋ 해남 우항리 지명 따서 해남이크누스 우항리엔시스인데...
-
살 찌우는 방법 있나 14
운동 하고는 있는데 수능 전까지 자주 굶었더니 180에 56까지 빠짐 지금......
-
사반수 0
어떻게 생각하세요 현역때 국어 영어 1고정 수학 98 96 92 백분위 와리가리...
-
뇌빼고 뻘글 뻘댓 벅벅 ㅋㅋ 도파민 폭발
-
[Web발신] 3
너는나를존중해야한다나는발롱도르5개와수많은개인트로피를들어올렸으며2016유로에서포르투갈을...
-
재수 사탐런 3
이번 수능 친 06이고 재수 할 것 같은데 사탐런 괜찮나요? 목표는 연대...
-
그럼 인기 많겟지..
-
전대 토목과 0
전대 토목과 학종 3.84합격 가능성있을까요
-
기묘한밤 보다가 질려서 뭐볼까 하던 차에 그냥 어쩌다 한번 봤는데 재밌어서 계속봄...
-
연고 서성한 라인 싹 다 텔그가 진학사보다 6.7점 더 높은데 어디로 봐야됨???
-
음 자야하는데 6
끄응
-
진짜 모름
-
던힐 라이트로 달린다
-
오뿌이들아 8
잘자
-
굿밤이에요
-
7->10 7
19->22
-
밤을 새고싶은데 12
늙은이라 힘이 딸림….
-
호시노가 되어야겠다
-
재르비언 한명 검거완료 28
티안나게 글쓴다고 생각하지만 눈에보인다는거임 본인 눈썰미가 말도안된다는거임..
-
ㅈㄱㄴ
-
개발자 유튜브 채널 보면서 개발자를 꿈꾼적도 있었는데 마크 모드 서버 열라고 몇시간...
-
정벽 부엉이 치타
-
평가원 취향저격 미연시 ㄹㅇ ㅋㅋ
-
오늘탈릅하신분찔려서탈릅한듯 ㅇㅈ도봤던분인데 내가 장난삼아 "왜 여자인척함?" 하니까...
-
솔직히 정시로 서성한 이상 갔다는 것부터가 정시에서 어느정도의 깨달음을 얻으신 것...
-
2025년 12월에요
-
댓글로 문의
-
ㄹㅇ 근데 친구가 멍소리하지 말래요 근데 이게 진짠걸 우뜩함
-
다른 사람 얼굴로 인증하면 됨 유익하셨다면덕코
-
갑자기 술마렵네 나는 미성년잔데
-
자매품으로 16수능 기출인가? 토끼전 호랑이 물똥싸는 거 있는데 이것도 ㅈㄴ 웃김...
-
메디컬 제외.. 전과 어디로할지 벌써 고민임 뚜렷한 방향성이 있는 것도 아니고...
-
짱구나 볼까
-
흐음
-
초중딩 이후로 눈 쌓인걸 본적이 없음
-
인생망했뇨
-
물론 난 동탈을 하지만..
-
잠 못 잠 내 생활패턴 우짜냐
-
뉴진스의 하입보이요 이건 홍대랑 무슨 관련이 있는 거임? 이 밈이 홍대에서 나온 건가?
-
아오 전붕이로 25부터 32까지 존나힘드네
-
..
-
똥 똥 똥 똥 그놈의 똥 똥 << 이새끼 생각하면 심란함 인생이 걍 내가 싸놓은 똥들임
고대 입학처 자료실에서 기출문제란 가시면 자료집 있어요
http://oku.korea.ac.kr/admissions/attach/attach.oku?stm=download&attach_idx=3ee282f2-25dc-4b6b-932b-c8b814519247&attach_seq=786&a=Y
n 대신 x라고 놓고(x 양의 실수) f(x) = x c^x 의 최댓값? 최솟값? 구하는 문제 말씀하시는건가요? (단 c = 2030/2031 <1)
f ' = c^x (1 +x ln c) 이니까, x = - 1 / ln c 일 때 최대이겠군요. (좌우에서 f' 의 부호 생각해보면 좌측에서 +, 우측에서 -
즉, n값이 -1/ ln (2030/2031) = 1/ln (2031/2030) 에 가까운 두 자연수 중 하나일 떄 최대가 되겠네요.
참고로 ln (2031/2030) = ln (1 + 1/2030) 이고, x/(x+1) < ln (1+x) < x 임을 이용하면
1/2031 < ln (1 + 1/2030) < 1/2030 이니까 위 값은 2030과 2031사이의 실수이고, 따라서 n=2030 or 2031일 때 최대가 될거에요.
x/(x+1) < ln (1+x) < x의 증명은 (단,x>0 일 때)
g(x) = x - 1/ln(1+x) 및 h(x) = ln (1+x) - x/(x+1)라 두시고 미분하시면 됩니다.