수능에 절대 안 나올 문제(부제: 논술에도 나올 수 없음)
정답률 0%에 도전해보죠. 수능에 안 나올거라고 적었지만 수능 끝나서 심심하시잖아요. 심심하시면 풀어봐요.
고등학교 과정만 써서 문제를 풀 수 있을..거에요 아마.. 제가 미리 풀어봤으니...
근데 syzy님은 풀지도..?
(이 문제는 봉사활동을 하기 위해 만들어졌습니다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
전남친이 있는 것 같다
-
전여친이 있는거같다
-
독재학원 다니는 분들 더프비용 학원비에포함되어잇나요?? 2
학원비에 포함되어잇나요 아니면 따로내나요?
-
윤도영 현강 0
윤도영 현강 고2가 듣게에는 빡시냐?
-
뭔 말인지 하나도 모르겠네 개인적으로 브레턴보다 어려움.
-
요즘 수능 특 2
라떼도 국정원(국일만) All new 한완수(라떼는 스텝2부터 시작함) 있었으면...
-
최상의 컨디션이라면 여태까지 실모 봤던거중에 가장 잘나온것만큼 나올수 있을까
-
오늘 왤케 뭔가 한 게 없는 거 같냐 ㅋ
-
날~아~가~워우워어어어어
-
야 ㅇㅈ 20
겟어요? 당근케이크사주는남자랑 연애해야지
-
제 목표대학 4
서울대 의예과. 는 못가고요 그냥 인서울 경제학과 가고싶은데
-
ㅇㅈ 0
-
나 밥먹는동안 존예도내쿨뷰티미녀르비 인증할거같아
-
여릅 ㅇㅈ 5
고냥이
-
나도 님들도
-
설경제수면 2
-
왜 ㅇㅈ햇는데 3
아무도 안봐..
-
난 안 쫄림 믿는 구석이 있어서 그런가.. 수능 망해도 수시 붙겠지.. 하는 생각….
-
국어 황 분들 도와주세요... 세번째 업로드... 22
1. 38번 문제에서 암묵적이 관형사인지 명사인지 구분을 어떻게 구분하나요?? 2....
-
ㅇㅈ해야겠다 3
4합8 맞추면
-
침공당함 ㅋㅋ
-
옥루몽 옥린몽 유씨삼대록 세개 구별이 불가능함
-
저는 개정 전 지2를 하다가 개정이 되고서 지1을 하기 시작해서 김지혁 선생님 천체...
-
1. 아리스토텔레스는 교정적 정의에 대해 거래에서 올바름이란 산술적 비례의 동등함을...
-
이걸어케참노?
-
뭐래 못생긴게
-
에이 설마 망하겠어
-
ㅇㅈ껄껑 9
컼 케리아사랑해
-
아흐레 남았구나 2
일의 자리네
-
당신에겐 가능성이 있다....
-
오르비의 미래가 밝습니다...^^
-
그래도 나이 30이라 외롭지않을줄 알았는데 아까 드라마에서 자기는 이제 고아라고...
-
그냥 가끔 실모 나오거나 하면 오답하고 던져버리는데 솔직히 안 나오겠죠…? 불안하면...
-
시발 이게 맞냐? 진짜? 몰카지?
-
저도 휴릅 13
수능 끝나고 들어옴... 선착 열명 덕코 1000덕
-
후회없이 벌었다 이것도 고되네..
-
오르비 특) 8
실모 등급컷은 올려치고 수능 평가원 등급컷은 내려치는 경향이 있다. 다소 의역하자면...
-
대성 생명과학1 0
07년생 내년수능준비하는 완전 개씹노베인데 박선우들어도됨? 박선우 개념어렵게...
-
님들 저도 맞팔해주셈 11
저 소외감 느끼는중 아무나 제발
-
수정할 점이나 개선했으면 하는 점 자유롭게 말씀해주시면 더 양질의 자료 만들어 드릴...
-
확통 다맞고십다 2
제발재잘제발 기도메타
-
수능국어100점은역시강민철
-
내일 11덮 싹 풀까요 아니면 걍 있는 국수영탐 실모 모아서 풀까요? 11덮이 싹...
-
개좃됐다 4
10층이 와장창! 자러가야죠.
-
휴릅 좀 해야겠다 24
십덕프사 선착순 4명 5천덕씩
-
다소 의역) 그럼 앞으로 사탐러 성적표 백분위를 20씩 내려서 평가해주면 되겠네!
-
인적사항은 기입하구여 제가 그러려는 건 아니에요 ···
-
수능 끝나고 겨울 방학 때 쓸 수 있는 돈 300만원이 생김 (겨울 방학 중에...
inx를 X로 치환합니다 찍고 갑니다
전 이 문제 풀 때 치환한 적이 없어서...ㅠ
ㅎㅎ 그런가요 괄호가 -1로 묶여있어서 왠지 치환해야 할것 같아서
-1은 역수표시에요
제 이름이 나왔으니 풀어야겠네요..ㅎ 직관적으로는 x가 무한대로 가면 거의 x/2ln x -2x/(ln x)^2 = (x ln x -4x) 2(ln x)^2 이니까 무한대로 발산해서 그런거 아닐까요. x무한대로가면 마지막식 분자는 x보다 크고 분모는 로그니까 상대가 안되서.. 혹은 그냥 해도 되지만 ln x = t 라 치환해서 정리하면
(e^t / (1+2t) - 2e^t / (1+t^2) )^-1 = (1+2t)(1+t^2)e^-t / (t^2 -4t-1) < 8t e^-t 이므로 됩니다. (단 t충분히 클 때 (1+2t)(1+t^2)<4t^3, t^2 -4t-1 > t^2 /2 이므로)
제 풀이보다는 훨씬 간략하네요! 마지막 식에 절댓값을 씌워서 샌드위치 정리를 쓰면 원하는 결론이 나오겠죠? 하지만 t/e^t의 극한값의 경우 0이라는 건 짐작할 수 있지만 직접 풀어본 학생들은 별로 없으리라 생각해요. 그래서 저는 x와 루트x를 이용해서 풀었는데 풀이는 따로 올릴게요~
t/e^t의 극한값이 0이라는 걸 직접 풀어본 학생들은 별로 없을 거라는 건 무슨 의미인가요?
e^t가 t보다 훨씬 빨리 증가하기 때문에 극한값이 0이라고 바로 생각할 수 있지만 실제로 풀이 과정을 서술할 수 있는 학생이 적다는 뜻이었습니다. ...아닌가요;;
이렇게 재밌는 문제도 올려주시고 고맙습니다ㅎ t/e^t 극한값 0인 것은, (로피탈 정리를 안 쓰더라도) t양수일 때 e^t > 1+t+ t^2 /2 을 증명해서 보이거나 ( f(t) = e^t -1-t -t^2 /2 라도 두시고, f ' , f '' 계산해서 t>0일 때 f(t)>0이다 보일 수 있으니까요), g(t) =e^t - t^2 라는 함수 둔 후에 t -> 무한대 이면 이 함수가 발산한다..(혹은 양수이다) 를 (역시 미분 이용해서) 보이면 될 것 같아요~ 또 가끔 봉사활동 해주시면 좋고요^^
못풀겟음.. 나삼순가..
- 비방죄 (Horus Code 제5조 7항)
정답률 0에 도전한다고 했지 정답률 0이라고는 안했고요, 논술에조차 나올 수 없다고 적은건 경향에 전혀 안맞기 때문이지 어려워서가 아닙니다. 제가 잘난척하려고 이글 쓴 줄 아세요?
딱봐도 잘난척하는거 보여요..ㄷㄷ
처ㅛ댓글에 치환으로 한다는 댓글 들어보지도 않고
본인이 푼방식은 그게아니라는건 전혀 논리적이지않음
걍 잘난척하랴고 올린거 ㅇㅇ
제가 언제 그 방식이 틀렸다고 했나요? 제가 푼 방법과 다르다고 한거죠. 그리고 자꾸 잘난척 하는걸로 몰아가지 마시죠.
몰아가기 참 잘하시네요.
이렇게 글의 의도를 왜곡해놓으시니 뭐라 말해야 할지 모르겠습니다.
홀든님, 글쓴이 엔공간님은 그냥 재미로 풀어보자고 그랬지,
불특정다수에게 "나 쩔지 쩔지 ㅋㅋㅋ " 라고 하신 게 아니라고 언급을 하셨습니다.
그리고 본문에 봉사활동 에 쓰려고 만든거라고 애초에 언급을 하셨잖아요.
홀든님에게서 편협성이 보이시네요.
글을 당신 머릿속에서 재구성 하시지 마시고 '있는 그대로'를 보세요.
내가 풀 수 있다, 정답률 0%다
흠?
문과라 이 문제가 얼마나 어려운지는 모르겠지만, 시간 넉넉히 잡고 여유있게 풀면 풀 수 있는 문제도 수능시험장에선 안풀어질수도 있는거 아니에요?
물론 그렇겠죠? 근데 전 '정답률이 0이다'라고 말한 적은 없었는데.. 그리고 저 문제는 당연히 시간 넉넉히 잡고 여유있게 풀면 풀 수 있는 문제고 어떤 분께서는 잠깐사이에 풀어내셨으니...
- 비방죄 (Horus Code 제5조 7항)
방금 전에 님이 "작성자가 '이 문제가 정답률 0%다'"라고 했잖아요? 말바꾸지 마세요. 그리고 '이거 이후로 댓글안담'이라는 말, 귀막는 거 맞죠? '내가 맞고 너가 틀리다'는 태도, 그렇게 겸손하다고 할 수 없을텐데요.
결국 말꼬리잡기였던 거군요.
님 말대로라면 학교 내신 객관식 시험에서 나오는 문제들은 선생님이 이미 푸셨으니 0%가 나올 수 없겠군요?
오르비 유저에 비하면 N공간님은 선생님이라는 의미인가요?
그걸 또 그렇게 해석하시는군요. 할 말이 없습니다.
오늘 신고했습니다. Horus Code 읽어보시면 알겠지만 Holden님의 행동이 인신공격죄, 비방죄, 모욕죄 중 하나에 해당한다는 사실은 부정할 수 없을 것입니다.
다들 너무 삑딱하게 바라보시는둣...? 설령 그렇게 느끼셧더라도 그냥 넘어가셔도 되실일 같은데.. 굳이 서로기분나쁠필요는없잖아요 ...
별것도 아닌거로 왜이렇게 트집을...;
lnx / x 가 무한대로 가면 0이된다.
이거만 알면 되지 않나요?? 잘못풀었나..?
극한풀이 기본 - 식간단화
분모통일. -1이므로
분자분모 위치 바꿔줌.
극한풀이 기본은 식을 변형해서 수렴부분을 도출해내고 수렴부분을 빼내버리는 식의 풀이이므로
좌변과 우변에 (lnx )^2나눠줌.
그러면 살펴보면 x와 lnx가 남게됨.
그래서 이 두개 극한이 어떻게 변하냐가 핵심 < 이라고 봤어요
루트엑스 빼기 엘엔엑스는 fx
f(4) > 0 (e>2임을 이용).
x>4에서 f'(x)는 양수.
그러므로 x>4에서 f(x)>0
고로
x>4에서 루트x>lnx
루트x /x > lnx/x > 0 성립 (단, x>4)
맨왼쪽 식 극한 0
그러므로 lnx/x도 극한 0
풀이발상근거 :
알고 있는건 다항함수 혹은 n차함수끼리 극한이므로 lnx보다 크지만 지수가 1보다 작은 x도출
=> 루트x 탄생!
이정도면 논술에 나올 수 있지 않나요?
문과라서 내용은 잘 모르겠지만 걍 아무의도없이 문제 투척한 거같은데...과민반응이 왤케 많지? 싸울일이 전혀 아닌데 ㅋㅋㅋㅋㅋ