수능에 절대 안 나올 문제(부제: 논술에도 나올 수 없음)
정답률 0%에 도전해보죠. 수능에 안 나올거라고 적었지만 수능 끝나서 심심하시잖아요. 심심하시면 풀어봐요.
고등학교 과정만 써서 문제를 풀 수 있을..거에요 아마.. 제가 미리 풀어봤으니...
근데 syzy님은 풀지도..?
(이 문제는 봉사활동을 하기 위해 만들어졌습니다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
다 했다 10
내가 해냈다구!
-
이렇다는건 채점기준에 부합하는말만 다 들어가면 좀 논리적비약이 있거나 서술이 좀...
-
간만의 새르비네
-
유튜브에 ‘수능 필적확인문구 노래‘ 검색하면 나옴
-
아 뭐가 문제지 진짜 개화나네
-
인증특) 2
아무도안돌려서 돌리면 돌아오는건 댓글2개와무관심뿐이라 수치사함
-
ㅇㅈ 2
찜질방 팡
-
ㅇㅈ) 눈 ㅇㅈ 15
-
와 ㄹㅈㄷ 사실 2
내일 (사실 오늘) 토요일임 ㅋㅋㅋㅋ캬캬컄 게다가 일정도 약속도 없음 드디어...
-
틀딱 아님 ㅇㅇ
-
벅벅 긁었다 벅벅 풀었다 이만큼 시원한 의성어가 없음 뭐라하지 그 묵직하고 두껍고...
-
질문 안하면 오늘 밤 꿈에 양손에 민초 든 민초한입 나옴
-
아무나한번시작해볼래요? 재밌잖아요
-
얼마나 행복하고 인생이 아름다울까..
-
인증메타돌려줘 3
으응나도보고싶어오랜만에
-
쫄지 말고 파이팅 하세요! 면접관 교수님분들 다 친절하시답니다 ㅎㅎ - 지금 퇴근하는 대학원생이
-
삼수 2
삼수 결정하신 분 있나요?ㅠㅠ
-
교과개념도 해야함?
-
틀.딱은 빨리 도망가야겟슴
-
신유형 zero에 평이한 수준으로 47이면 그정도로 고이진 안ㅍ은듯 ㅇㅇ.....
-
질받 해볼래요 32
ㄱㄱㄱ
-
인증메타만 매일 굴리다가 2월돼서 탈릅한사람 있었는데 올해도 오려나
-
작수 9모 둘다 문학에서 35분 썼고 독서는 틀린 적 없습니다 문학에서 5 6개씩...
-
프사 복귀 완 16
프사 너무 밝아보임 이정도가 적당한듯
-
오늘기분이좋아요 8
왜냐면 수능을망쳐도 괜찮은게아닐까라는 생각을전개했었거든요 이대로도괜찮지않을까요?...
-
지듣노 2
시간차가 좀 나지만 암튼 지듣노
-
치 지구의 운동에 대하여 지동설 관련 만화. 재밌음 헬크 재밌는 판타지 만화 기생수...
-
물리 48드립은 0
어디서나온거임
-
인증메타돌려줘 0
제발
-
재수하는데 의대노리고할거같은데 어디가 좋을까요?
-
저는 칸타타님을 2
존경합니다 하.지.만. 이번만큼은 양보 못해드려요
-
홈화면 ㅇㅈ 4
미니멀리즘을 너무 좋아해서 커스텀으로 꾸먀봤어요
-
이거 진짜에요?
-
ㅎㅎ
-
이럴땐 좋아요 몇개시 인증같은걸...
-
메가 일타쌤들은 대부분 인스타계정 다 가지고 계시고 소통도 활발한데 뭔가 대성...
-
난 잔다 8
안녕
-
나도 이미지 적어드림 57
-
최저용으로 수능 봤는데 정시로 가면 어디될지 궁금 인하대 낮은과 가능?
-
크아아아인악
-
대학탐방 2
인하대 인천대 홍익대 세종대 마지막으로 건국대 이러고 집옴 최종적으로 4만보는 커녕...
-
공부끜나고오는데 기분쫌더럽내 동네샷찍는거 취미임
-
오르비라는 격식있는 장소에서 교양있는 분들과 이야기할 수 있어 엉광입니다.
-
편의점에서 블아랑 포켓몬빵 파는건 알았는데
-
저도 잠안오는데 16
궁금한점 물어봐드릴께요
-
거의 화1급 표본인 거임?
-
머릿속에 있는 건 많은데 뭔가 정리가 안 돼있음
-
연상이 취향인데 6
1년 더 하면 진짜 직장인 눈나 만나야 할 것 같음… 현역으로 대학 1년 다녔지만...
inx를 X로 치환합니다 찍고 갑니다
전 이 문제 풀 때 치환한 적이 없어서...ㅠ
ㅎㅎ 그런가요 괄호가 -1로 묶여있어서 왠지 치환해야 할것 같아서
-1은 역수표시에요
제 이름이 나왔으니 풀어야겠네요..ㅎ 직관적으로는 x가 무한대로 가면 거의 x/2ln x -2x/(ln x)^2 = (x ln x -4x) 2(ln x)^2 이니까 무한대로 발산해서 그런거 아닐까요. x무한대로가면 마지막식 분자는 x보다 크고 분모는 로그니까 상대가 안되서.. 혹은 그냥 해도 되지만 ln x = t 라 치환해서 정리하면
(e^t / (1+2t) - 2e^t / (1+t^2) )^-1 = (1+2t)(1+t^2)e^-t / (t^2 -4t-1) < 8t e^-t 이므로 됩니다. (단 t충분히 클 때 (1+2t)(1+t^2)<4t^3, t^2 -4t-1 > t^2 /2 이므로)
제 풀이보다는 훨씬 간략하네요! 마지막 식에 절댓값을 씌워서 샌드위치 정리를 쓰면 원하는 결론이 나오겠죠? 하지만 t/e^t의 극한값의 경우 0이라는 건 짐작할 수 있지만 직접 풀어본 학생들은 별로 없으리라 생각해요. 그래서 저는 x와 루트x를 이용해서 풀었는데 풀이는 따로 올릴게요~
t/e^t의 극한값이 0이라는 걸 직접 풀어본 학생들은 별로 없을 거라는 건 무슨 의미인가요?
e^t가 t보다 훨씬 빨리 증가하기 때문에 극한값이 0이라고 바로 생각할 수 있지만 실제로 풀이 과정을 서술할 수 있는 학생이 적다는 뜻이었습니다. ...아닌가요;;
이렇게 재밌는 문제도 올려주시고 고맙습니다ㅎ t/e^t 극한값 0인 것은, (로피탈 정리를 안 쓰더라도) t양수일 때 e^t > 1+t+ t^2 /2 을 증명해서 보이거나 ( f(t) = e^t -1-t -t^2 /2 라도 두시고, f ' , f '' 계산해서 t>0일 때 f(t)>0이다 보일 수 있으니까요), g(t) =e^t - t^2 라는 함수 둔 후에 t -> 무한대 이면 이 함수가 발산한다..(혹은 양수이다) 를 (역시 미분 이용해서) 보이면 될 것 같아요~ 또 가끔 봉사활동 해주시면 좋고요^^
못풀겟음.. 나삼순가..
- 비방죄 (Horus Code 제5조 7항)
정답률 0에 도전한다고 했지 정답률 0이라고는 안했고요, 논술에조차 나올 수 없다고 적은건 경향에 전혀 안맞기 때문이지 어려워서가 아닙니다. 제가 잘난척하려고 이글 쓴 줄 아세요?
딱봐도 잘난척하는거 보여요..ㄷㄷ
처ㅛ댓글에 치환으로 한다는 댓글 들어보지도 않고
본인이 푼방식은 그게아니라는건 전혀 논리적이지않음
걍 잘난척하랴고 올린거 ㅇㅇ
제가 언제 그 방식이 틀렸다고 했나요? 제가 푼 방법과 다르다고 한거죠. 그리고 자꾸 잘난척 하는걸로 몰아가지 마시죠.
몰아가기 참 잘하시네요.
이렇게 글의 의도를 왜곡해놓으시니 뭐라 말해야 할지 모르겠습니다.
홀든님, 글쓴이 엔공간님은 그냥 재미로 풀어보자고 그랬지,
불특정다수에게 "나 쩔지 쩔지 ㅋㅋㅋ " 라고 하신 게 아니라고 언급을 하셨습니다.
그리고 본문에 봉사활동 에 쓰려고 만든거라고 애초에 언급을 하셨잖아요.
홀든님에게서 편협성이 보이시네요.
글을 당신 머릿속에서 재구성 하시지 마시고 '있는 그대로'를 보세요.
내가 풀 수 있다, 정답률 0%다
흠?
문과라 이 문제가 얼마나 어려운지는 모르겠지만, 시간 넉넉히 잡고 여유있게 풀면 풀 수 있는 문제도 수능시험장에선 안풀어질수도 있는거 아니에요?
물론 그렇겠죠? 근데 전 '정답률이 0이다'라고 말한 적은 없었는데.. 그리고 저 문제는 당연히 시간 넉넉히 잡고 여유있게 풀면 풀 수 있는 문제고 어떤 분께서는 잠깐사이에 풀어내셨으니...
- 비방죄 (Horus Code 제5조 7항)
방금 전에 님이 "작성자가 '이 문제가 정답률 0%다'"라고 했잖아요? 말바꾸지 마세요. 그리고 '이거 이후로 댓글안담'이라는 말, 귀막는 거 맞죠? '내가 맞고 너가 틀리다'는 태도, 그렇게 겸손하다고 할 수 없을텐데요.
결국 말꼬리잡기였던 거군요.
님 말대로라면 학교 내신 객관식 시험에서 나오는 문제들은 선생님이 이미 푸셨으니 0%가 나올 수 없겠군요?
오르비 유저에 비하면 N공간님은 선생님이라는 의미인가요?
그걸 또 그렇게 해석하시는군요. 할 말이 없습니다.
오늘 신고했습니다. Horus Code 읽어보시면 알겠지만 Holden님의 행동이 인신공격죄, 비방죄, 모욕죄 중 하나에 해당한다는 사실은 부정할 수 없을 것입니다.
다들 너무 삑딱하게 바라보시는둣...? 설령 그렇게 느끼셧더라도 그냥 넘어가셔도 되실일 같은데.. 굳이 서로기분나쁠필요는없잖아요 ...
별것도 아닌거로 왜이렇게 트집을...;
lnx / x 가 무한대로 가면 0이된다.
이거만 알면 되지 않나요?? 잘못풀었나..?
극한풀이 기본 - 식간단화
분모통일. -1이므로
분자분모 위치 바꿔줌.
극한풀이 기본은 식을 변형해서 수렴부분을 도출해내고 수렴부분을 빼내버리는 식의 풀이이므로
좌변과 우변에 (lnx )^2나눠줌.
그러면 살펴보면 x와 lnx가 남게됨.
그래서 이 두개 극한이 어떻게 변하냐가 핵심 < 이라고 봤어요
루트엑스 빼기 엘엔엑스는 fx
f(4) > 0 (e>2임을 이용).
x>4에서 f'(x)는 양수.
그러므로 x>4에서 f(x)>0
고로
x>4에서 루트x>lnx
루트x /x > lnx/x > 0 성립 (단, x>4)
맨왼쪽 식 극한 0
그러므로 lnx/x도 극한 0
풀이발상근거 :
알고 있는건 다항함수 혹은 n차함수끼리 극한이므로 lnx보다 크지만 지수가 1보다 작은 x도출
=> 루트x 탄생!
이정도면 논술에 나올 수 있지 않나요?
문과라서 내용은 잘 모르겠지만 걍 아무의도없이 문제 투척한 거같은데...과민반응이 왤케 많지? 싸울일이 전혀 아닌데 ㅋㅋㅋㅋㅋ