부정방정식 질문입니다.
문제)두 정수 a, b에 대하여 x에 대한 이차식 x^2+(3a+1)x+2a^2-b^2이 완전제곱식이 되도록 하는 a, b의 순서쌍 (a,b)의 개수는?
-시발점 수학(상)
저는 이 문제를 풀때, 완전제곱식이 되려면 '2a^2-b^2'이 일차항의 계수의 반의 제곱이 되어야 한다는 성질을 이용해서 풀었습니다.
현우진 선생님께서는 위의 이차식이 완전제곱식이라면 ( )^2 형태이므로 ( )^2=0이라고 치면, 중근을 가질거니까 '판별식=0' 이라고 두고 푸셨습니다.
현우진 선생님의 풀이가 이해가 조금 안되ㅅ qna로도 질문드려봤지만 돌아온 답변은 '가정일뿐이다'라는 것이였습니다.
제가 궁금한 점은, 어떻게 =0이라고 가정하고 풀 수 있는지 입니다.
혼자서 이걸 이해해보려고 함수로 생각해봤습니다. y=위의 이차식 꼴의 이차함수를 말이죠.
그리고, 이차함수의 함숫값이 0인 경우를 생각해보니까, 현우진 선생님 풀이대로 풀어도 문제가 없다고 느껴집니다만, 이차함수가 x축과 만나지 않을 때도 있기 때문에 헷갈립니다...
명확하게 설명해주실 분 계신가요??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
23학년도 수능 국어와 한수 콘텐츠(한수멘토_컨택트) 0
안녕하세요, 지난 글이 마지막일 줄 알았는데, 한수로부터 마지막 임무를 하나 더...
-
안녕하세요, 이제 2023학년도 수능이 6일 남았습니다. 다들 그동안 열심히...
-
안녕하세요, 드디어 11월입니다. 오늘은 한주 시즌5의 9호인 주간지 전용...
-
안녕하세요, 9월 모의평가도 끝나고 이제 수능까지는 수시원서 접수와 고3의 10월...
-
안녕하세요, 제가 있는 곳에는 비가 많이 오는데, 다들 공부는 잘 하고 있으신가요?...
-
한주 시즌4 가이드 12
안녕하세요, 오늘은 한주 시즌4에 대한 안내를 하려고 합니다. 시즌 3에서는 영역별...
-
6평 후, 도약의 시간 15
현역과 N수생의 시간 활용은 다릅니다. 그러나 6월 이후의 시간은, 질적인 향상을...
-
안녕하세요, 드디어 6평이 10일 앞으로 다가왔습니다.그동안 날씨가 많이 더워지면서...
-
안녕하세요, 오늘은 한수국어에서 산문 작품들을 대비하는 데 도움을 주기 위해 출판한...
-
2023 수능특강 언어 파트를 풀면서 문제 구성 방식이나 선지 해설들을 꼼꼼하게...
-
시즌 3 구성 1) 독서, 문학 문제 - EBS 연계 + 비연계 역대 한수 모의고사...
-
안녕하세요, 내일이 3월 학평입니다. 학교나 재수학원, 독서실 등에 적응하면서 다들...
-
안녕하세요, 오늘은 3월 학력평가에 대한 이야기로 시작해 보겠습니다. 아무래도 3월...
-
안녕하세요, 한수멘토 컨택트입니다. 수능특강이 출시되고, 먼저 풀고자 하는 분들은...
-
시즌 2 구성 1) 독서 학습 전략 노트 & 독서 개념 정리 수능특강 독서 지문에...
-
안녕하세요, 오늘은 국어 선택 영역인 화법과 작문/언어와 매체의 특징에 대한...
-
안녕하세요, 오늘은 국어 선택과목에 대한 이야기를 준비했습니다. 저는 22학년도...
-
시즌 1 수록 문항 1)22학년도 수능 문제(독서 1지문, 문학 1지문)2)기존에...
-
6월 직전부터 9월 이후 - 실전 모의고사 수능까지 가장 많은 고민을 하는 콘텐츠가...
-
국어 1년 커리 가이드(2) - N제와 EBS 연계 0
안녕하세요, 오늘은 N제와 EBS에 대해 이야기해 보겠습니다. 기출문제 학습이 어느...
-
안녕하세요, 오늘은 1년 동안 할 국어 공부의 커다란 흐름, 그 중에서도 기출문제에...
-
안녕하세요, 앞으로 1년 동안 한수멘토로 활동하게 되었습니다. 선발해주신 한수...
판별식을 쓰는 것은 방정식이라고 가정한 다음에 계산하는 거고요, 그래프를 이용해서 함수로 나타내는 것 역시 좌표평면상에서 y=0 (다른 말로 x축)과의 교점이 하나만 (실근은 2개, 서로 다른 실근은 1개(일명 중근)) 나오도록 만드는 겁니다. 둘 다 일종의 가정(if)입니다... 잘못 푼 것은 아니고요...
님이 접근한 이 식이 완전제곱식이 되려면 2차에서 1차항 계수의 절반의 제곱이 상수항의 제곱이 되는 형태로 푸는 것은 가정없이 가장 authentic하게 접근한 겁니다... 역시 이 풀이만 맞는 것도 아니고요...
수학은 관점에 따라서 자유롭게 변신할 수 있어야 합니다. 단, 그 변신이 논리적으로 잘못된 것이 없다는 전제 하에서요...
그런데 위의 이차식이 0이라는 값을 가질 수 없다면, 가정이 정당하지 않은 것 아닌가요?
가정이 정당하지 않은게 아니고요 완전제곱형태가 불가능하다는 결론이 나오겠죠... 실수체에서요...
방정식 꼴에서 완전제곱형태 말씀하시는 거죠?
( )^2=0 이 꼴이요.
예... 미지수가 포함된 방정식이라면 복소수체에서 따질 때에는 무조건 2차방정식의 근 2개는 존재하지만 실수체에서만 따지는 경우라면 있을수도 있고 없을수도 있습니다...
이렇게 가정해서 푸는걸 처음봐서 그런지... 익숙하지도 않고 별로 와닿지가 않네요ㅜ
아직도 이해가 안되요
수학 기법상 가장 광범위한게 행렬하고 방정식입니다... 식에서 성립하는 거면 방정식에서도 성립합니다. 방정식에서 성립한다고 식에서 성립하는 것은 아니고요... 이 말인즉슨 식에서 성립안하는 것처럼 보여도 방정식으로 놓고 보면 성립하는 경우도 존재합니다...
저 위에서 0을 가질 수 없을때는 완전제곱형태가 될 수 없다고 말씀하셨는데, 그렇다면 판별식=0을 활용할 수 없는 것이 아닌지요?
x^2 + 2ax + a^2-2a 이런 식이 있다고 하고 이게 완전제곱식이 되려면
1차항의 계수 절반의 제곱인 a^2 = a^2-2a이면 되겠죠... 그럼 a=0이 나오고 본식은 그냥 x^2이니까 성립합니다. 그런데 a가 0이 아니면 본식을 완전제곱식으로 만드는 a는 존재하지 않는거죠... 즉, 방정식으로 놓고 판별식을 쓰나 그냥 완전제곱꼴 변형을 하나 차이가 없다는 겁니다...
이제서야 생각이 났는데, 완전제곱식은 무조건 0이라는 값을 가지게 되있네요!
예를 들어 (x-a)^2이라는 식은 x=a일때 0을 가지듯이 말이에요.