[이동훈 기출] 수능 실전이론 2019
실물책자 출간으로 인하여 PDF 파일을 삭제합니다.
2019 이동훈 기출 atom 책페이지
안녕하세요~
이동훈 기출문제집의 저자 이동훈입니다. :)
이동훈 기출문제집 2019의 부교재(PDF)인
수능 실전 이론편 (42개의 주제)를
6월 모평 대비 자료로 올려드립니다.
수능 실전 이론편은
(1) 교과서의 개념으로 증명+추론 가능한
(2) 역대 수능/모평에서 중요하게 다루는 실전 이론(문제풀이 도구)를 정리한 문서입니다.
예를 들어, 기벡의 공도회, 미적분1+2의 변곡접선, ... 등의 주제들을 다루고 있습니다.
6월 모평에서도 좋은 결과를 얻으시길 기대합니다.
감사합니다 !
이동훈
-------------- 수능 실전 이론편 (42개의 주제) --------------
(01) 수학2(함수) 유리함수, 무리함수와 격자점
(02) 수학2(수열) 등차등비수열의 전형적인 문제 (+등차중앙, 등비중앙)
(03) 수학2(수열) 합에서 일반항 유도하기
(04) 수학2(수열) 수학적 귀납법으로 증명하기
(05) 수학2(수열) 발견적 추론 (수를 나열한다.)
(06) 미적분1(수열의 극한) 수열의 극한과 급수의 계산
(07) 미적분1(수열의 극한) 등비급수와 중등기하
(08) 미적분1(함수의 극한과 연속) 함수의 연속에 대한 전형적인 응용문제
(09) 미적분1(함수의 극한과 연속) 사이값 정리의 활용
(10) 미적분1(다항함수의 미분법) 미분계수와 도함수의 다양한 문제들
(11) 미적분1(다항함수의 미분법) 접선의 방정식 (+최단거리)
(12) 미적분1(다항함수의 미분법) 평균값 정리의 활용
(13) 미적분1(다항함수의 미분법) 3차, 4차 함수의 그래프 (+인수정리)
(14) 미적분1(다항함수의 미분법) 미분가능성 (+절댓값)
(15) 미적분1(다항함수의 미분법) 미분법의 방정식, 부등식에의 활용 (문과)
(16) 미적분1(다항함수의 적분법) 구분구적법을 정적분으로
(17) 미적분1(다항함수의 적분법) 적분과 미분의관계, 미적분의 기본정리에 대한 전형적인 응용문제
(18) 미적분2(지수함수와 로그함수) 지수로그함수의 수학1 내적 연관
(19) 미적분2(지수함수와 로그함수) 삼각함수의 수학1 내적 연관
(20) 미적분2(삼각함수) 삼각함수, 지수로그함수의 극한과 중등기하
(21) 미적분2(미분법) 역함수의 미분법 총정리
(22) 미적분2(미분법) 사이값 정리, 평균값 정리의 활용
(23) 미적분2(미분법) 합성함수의 연속성과 미분가능성
(24) 미적분2(미분법) 접선의 방정식 (+변곡점, 점근선의 관점)
(25) 미적분2(미분법) 초월함수 그래프 (+빠르게 그리는 방법)
(26) 미적분2(미분법) 이계도함수에 대하여 (+함수의 볼록성)
(27) 미적분2(미분법) 미분법의 방정식, 부등식에의 활용 (이과)
(28) 미적분2(적분법) 치환적분법, 부분적분법의 전형적인 응용문제
(29) 확률과 통계(순열과 조합) 합의법칙, 곱의법칙 (+수형도)
(30) 확률과 통계(순열과 조합) 조합, 중복조합, 순열, 중복순열에 대하여
(31) 확률과 통계(확률) 확률의 계산 (+밴다이어그램)
(32) 확률과 통계(확률) 확률의 전형적인 응용문제 (+개념정립)
(33) 기하와 벡터(이차곡선) 이차곡선의 정의와 중등기하
(34) 기하와 벡터(이차곡선) 교과서에는 없는 이차곡선의 성질
(35) 기하와 벡터(평면벡터) 벡터의 일차결합 (+개념정립)
(36) 기하와 벡터(평면벡터) 벡터 내적의 최대최소 (+상수변수)
(37) 기하와 벡터(공간도형) 공간도형을 관찰하는 법 (단면화, 정사영, 전개도)
(38) 기하와 벡터(공간도형) 공간도형 개념정립
(39) 기하와 벡터(공간벡터) 좌표공간 개념정립
(40) 기하와 벡터(공간벡터) 공간에서의 직선, 평면, 구의 방정식 (+위치관계)
(41) 기하와 벡터(공간벡터) 두 평면이 이루는 각의 크기를 구하는 3가지의 방법
(42) 기하와 벡터(공간벡터) 한 평면에 포함되는 3개의 공간벡터에 관하여
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이거 메가 경쟁자 대비 성적분포로 전체 채점결과를 알순없나? 0
본인 원점수를 조정하면 그 원점수에 따른 경쟁자의 성적분포가 나오는데 그럼 내...
-
언매, 미적의 메가스터디 채점자 평균치의 상대점수는 대략 비례하는 경향이 있음. 내...
-
저를 찾아주세요
-
그냥 따라하기만 함
-
어디가 더 좋을까요? (참고. 한양대 전기는 전자공학이 아님)
-
얼버기 3
죠은 아침
-
ㅈㄱㄴ
-
새벽감성노래 1
이미새벽은지나갔지만
-
뭔가 위에 대학 이름이랑 같이 붙어있으면 너무 위에 쏠려있는 느낌서울대나 경희대처럼...
-
기상 완료 알바 가기 시러
-
진짜 인재 놓친거다.
-
오르비 망했나
-
이번수능 대충 언미영사문생1 23212 받았습니다 순수과학에 흥미가 생기기도했고,...
-
갈드컵 안열리네 예전에 이거갖고 말 엄청 많았던걸로 기억하는데
-
경북대 치대 논술 가야할까요??ㅠㅠ 지금 6칸입니다ㅠㅠ
-
삼반수 할까 2
작수 55332 올해 33231 흠
-
내신 대비로 어떤 문제집이 괜찮은가요???
-
어느길로갈까요 7
젤 무서운 길을 8분 정도 걸리고 가로등 없음... 다른 길은 15분에 가로등 몇개...
-
재수는 싫고 반수하면 놀다가 제대로 못할거같고 남은건 군수뿐인거같은데
-
집이드 편의점최고
-
문제집 분리수거 2
이번 수험기간동안 푼 문제집들 다 종이 버리는곳에 버리면 될까요? 스프링은 없어요
-
치감걸린듯 4
왜 힐이안되냐
-
기적의 수면패턴 3
8시수면 4시반기상 ㅋㅋ
-
알바 헬스 대학공부
-
처음부터 마지막까지 네 맘을 알고 싶은걸
-
반갑습니다. 10
-
아낌없이주는나무는이제없다..
-
전시즌 플레계정인데 랜만에 켜서 한판해서 첫판 이겼더니 실버 4를 주네
-
벌써 2028 수능 준비하는 사람 있음? 아는 08 지금 자퇴하고 2028 수능 준비하는데
-
이번 겨울부터 시대 라이브반 수강하려고하는데 언제쯤 개강하나요??
-
나도 그때까진 생지가 무슨 이과냐고 생각하면서 이과가 물화중 하나도 안 하는게...
-
방금 라면먹고 3
식은 밥말아먹는 중인데 살안찌겠죠? 오늘 아침안먹었고 점심 저녁만먹음 점심엔 떡볶이...
-
행렬 공간벡터 모비율의 추정 롤백시킨건 근본스러운데 3
행렬은 공통수학1에 있어서 간접 연계로 들어가는데 수학적 귀류법이나 순열처럼...
-
언 미 영 물1 지1 동대나 홍익대 공대는 가능할까요...?
-
지각안할라면넉넉히 6시50엔 일어나야하는데 ㅅㅂ오늘 ㅈㄴ쳐잣더니 잠안옴..ㅈ댬
-
기숙학원재수는 1년6개월동안 공부해야하고 기간동안 수능을 볼 수 없으며...
-
위치 신경안쓰고 학교 지원이나 아웃풋 측면에서만 ㅇㅇ 입시 커뮤 말고는 어떤 기준으로 알아봐야됨?
-
ㅏ 드디어 1
올 한해를 알차게 보내기 위한 인강 커리 N제들 계획을 다 세웠다 이대로만...
-
세종대 논술 0
보통 수학 몇등급대가 오나여? 미적 안한 기하러 합격 가능세계잇음?
-
07들에게 힘의 차이를 보여주기 위해
-
.
-
이새끼들 안죽냐 변기물로 익사시킴
-
긴장되네요.. 0
인생이 바뀌는 시험이라 그런지
-
올인원, 단어, 유형독해만 듣고 빈순삽은 교재없이 강의만 들어도 되나요? 목표는 2등급 이상입니다.
-
ㅈㄱㄴ 실모에요 N제에요?
-
이번에 보니까 호텔관광이랑 묶어서 계열로 뽑던데 2학기끝나고 전공 선택할때...
-
음..
-
의치한은 진짜 그런가요
-
계정은 남겨 두겠음
-
우울글 3
(반말주의) 사실 나는 의대가 너무 가고싶었다. 아니, 의사가 되고 싶었다는 말이...
이륙
경찰 사관 교육청 n제는 언제 나오나요??
2019 이동훈 기출 교육청/사관/경찰 은 6월 10일 전후에 출시 하기 위하여 노력중입니다. 감사합니다. :)
부끄럽습니다. ^^;
감사합니다
올해 수능에서 좋은 결과 있기를 기원하겠습니다~~ ^^
선생님 기출문제집 정말 잘풀고있어요 2번3번.. 선별해서 역대기출 편집해서 책펴내주신거 다시한번 감사드려요
제 책을 선택해 주셔서 감사드립니다 ~! 올해 수능에서도 좋은 결과 있으시길~ ^^
좋아요!
선생님 기출 푸는데 미2 풀이과정 많은거 너무 좋아요 ㅠㅠ 근데 확통은 넘나 풀기 싫은것...
이 통합본 카페에도 올려주시나요??
카페에 통합본을 따로 업로드하겠습니다. 감사합니다~ ^^
감사합니다~~ ^^
선생님 세과목 다 선생님 문제집쓰는데, 요새 흐름과 안맞는(잘 안나오는) 올드한 어려운 문제는 가볍게 확인만하고 넘어가도 괜찮을까요?? 빨리 1회독 하고싶어서요 ㅜ 문과입니다!
또 작년과 올해꺼 차이가 무엇인가요? 어떤건 작년, 어떤건 올해것을 가지고 있습니다
2018 버전이 전반적으로 문항 선정에서 좋지 않은 평가가 있었어서, 2019 버전에서는 반응이 좋지 않았던 문제들(제가 실수로 넣은 문제들도 있었지요.)을 모두 삭제하였습니다. 풀이도 시험장에서의 실전풀이 위주로 - 약 200 문항 이상 - 새로운 풀이가 대거 수록되었습니다. 가능하면 2018보다는 2019버전으로 공부하실 것을 권합니다. (2018에서 제외해야 하는 문제는 제 네이버 카페에 목록을 올려두었으니, 참고하세요.) ^^
우선 제 책을 선택해주셔서 감사드립니다. :)
수험생 커뮤니티를 모니터링 한 결과, 수학2의 일부 단원을 제외하면, 문항 선정에는 큰 컴플레인은 없어 보입니다. 수학2의 집합명제, 함수 단원에서 90년대, 00년대 문제들은 우선순위를 뒤로 미루셔도 좋을 것으로 생각합니다. (그 외의 과목에서도 올드한 느낌이 있는 문제들 역시 우선순위를 뒤로 미루셔도 됩니다.) 하지만 가능하면 나중에라도 푸는 것을 권합니다. 예를 들어 작년 나형 21번 함수 문제의 경우에는 90년대, 00년대 기출문제가 결합된 것이였어서, 예전의 문제들 중에서도 현행 교육과정상 풀수 있는 문제라면 가능하면 풀어주는 편이 낫습니다. 감사합니다~~ :)
자료 미쵸따...
학습에 도움이 되길 ... :)