적분 질문 두 가지 부탁드립니다.
1.
문제 : ∫(위1 아래0) (x^2-x)dx +∫(위2 아래1) 3(x-1)(x-2)dx + ∫(위5 아래3) 4(x-3)(x-5)dx=?
답은 물론 구했습니다. 그런데 답지를 보니 ∫(위1 아래0) (x^2-x)dx = ∫(위1 아래0) x(x-1)dx = -1/6 × (1-0)^3 = -1/6 이라는 식으로 해서 식을 간단하게 놓고 빠르게 풀었더군요. 저는 그냥 식을 무식하게 다 적분해서 일일이 풀었는데......제가 독학이라서 열심히 문제지를 확인했는데 어떻게 이런 식이 나오는지 알 수가 없네요.
2. 문제 : ∫(위x 아래3) (x-t)f(t)dt=x^3+ax^2-15x+36을 만족시키는 미분가능한 함수 f(x)에 대하여 f(3)=b일 때, a+b의 값은? (참고로 a,b 상수)
답은 a=-2, b=14해서 12인데요.
제가 이거 식을 보니 ∫(위x 아래3) (x-t)f(t)dt = x∫(위x 아래3) f(x)dt - ∫(위x 아래3) tf(t)dt임을 이용해 주어진 식의 양변을 x에 대해 미분하여
d/dx ∫(위x 아래 3) (x-t)f(t)dt= ∫(위x 아래 3) f(x)dt + xf(x) - xf(x)가 나오던데...이 부분이 이해가 안 됩니다. 어떻게 나오는지요.
제가 독학이라 막힐 땐 좀 절망적으로 막히네요..ㅠ두 개 부탁드립니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이거 정시차별이여
-
어느 정도 하고 가는 게 도움은 될까요?
-
이게 전생이랑 연관이 있다는대 어떤 풍경보면 뭔가 익숙함 근데 신기한 게 꿈에서도...
-
저는 23수능 화작 컷보고 기겁함
-
마라탕2만원정도먹고ㅡ>도넛 루틴됨 맘먹고찾으면특정되겠네
-
자 이제 도서관에서 절 찾아보세요 절 찾으시면 오늘 저녁 사드립니다
-
원래는 하나하나 꼼꼼히 대조하고 본문 찾아서 풀고 그러는데 카페인 먹으면 걍 감에...
-
고민 좀 더 해볼거같긴한데 하게된다면 수능때 영어 미끄러져서 확실히 잡아두고싶은데
-
집회X발
-
사라지기 4분전 2
잇올.. 그들이 오고있어 시간을 멈춰야만해
-
https://youtube.com/shorts/Moc49qvc08c?si=cMVlP...
-
엉덩이가 아파 1
엉덩이 운동 하니까 엉덩이가 아프다
-
ㅇㅇ
-
제일 자주 쓰는거
-
제주도 노잼이네 6
어릴때 이후로 안와서 다시 한번 와봤는데 역시 일본이 더 재밌긴 하네.
-
어떤게 재밌나요
-
유쾌 유쾌 한가요 아님 좀 음침한가요
-
맞팔구 7
-
히고 먹어보고싶다....... 진짜 ㅈㄴ 맛있을듯
-
한양 맛집 8선 0
대학커뮤니티 노크에서 선발한 한양대 선배가 오르비에 있는 예비 한양대학생, 한양대...
-
안녕하세요..! 지구과학을 좋아하는 현역학생입니당 심심할때마다 문제를 만드는데요!...
-
확실히 물2가 재미있긴 하네
-
전 얘가 제일 좋더라고요
-
ppt 만들어서 발표할껀데 검토해주실 분 계심요?
-
표본 어느정도 들어왔나요? 설경 낸건 아닌데 궁금해서.... 중상위 표본들이 좀 들어왔나요?
-
메인 ㄷㄷ
-
수능에서 2맞는건 좀 껌이구나;;
-
오후에 일어나본거 인생에서 첨임...;;;;;
-
여자되고 싶다 19
내가 여자였으면 진짜 하루종일 ”그거“ 할듯
-
소설읽는데 4
이거 뭐임ㅋㅋ 너무하네
-
ㄹㅇ ㅇㅇ 근데 이걸 칼럼이라할수있나?그냥 썰이라할까?
-
여자한테 저렇게 왔으면 좋았겠다..하고 내 인스타그램 별명설정을 여자이름으로 해둔거였구나
-
전 60점
-
고려대는 당장 조기발표해라
-
나 친구(남자)들한테 맨날 심심할때 @@아 뭐해? 보냈는데 ㅅㅂ
-
강북도 그닥인가
-
시간당 3만원이면 단과보다 비싼데 그만큼 효율이 있나
-
통합사회와 한국지리는 전혀 접점이 없고 문제도 지리 교사가 낸 것같지 않지만...
-
백분위 0 5
상위100%
-
모솔아다삼수생이 여자친구 사귀려면 어떻게 해야하나요?? 8
진지합니다.
-
이대 조발 ㅈㅂ 2
조발 안하기로 유명해서 할 가능성은 없지만 그래도 15일을 언제 기다려 OTL
-
밥도 맛있게 드셨으니 식음을 전폐하고 조발을 기다리는 우리에게 감격의 발표를..!!...
-
얍얍 15
오르비 죽어라 얍얍
-
불확정성 원리에 완전 꽂혀가지고 왜 그런지 알아보기 위해서 행렬을 공부하고 이해해서...
-
메인보내줘라 ㅇㅇ
-
키가안커요 2
ㅠㅠㅠㅠㅠ
-
이씨발ㅈ같은거 4
아니 윈터 러셀모고쳣는데 3:4:5 직각삼각형을 2:3:5라 생각해서 코사인 5분의...
(1) a < b 일 때, 다음 꼴의 적분에 대한 일반적인 공식이 존재합니다.
∫_{from a to b} (x - a)^m (x - b)^n dx
특히 m = n = 1 일 경우에는 많은 문제집에서 소개하고 일부 교과서에서도 문제 등을 통해 소개하는 결과로
∫_{from a to b} (x - a)(x - b) dx = -(b-a)^3 / 6
가 있습니다. 이 식을 유도하는 방법은 여러가지가 있습니다만, 노가다를 뛰셔도 좋고, 치환적분을 해 보아도 좋고, 뭐 방법은 정말 많지요.
(1) 사람들이 개념을 강조하는 이유가 바로 이런 데 있습니다. 우리가 매일매일(?) 적분을 계산할 때 사용하는 위대한 정리인 정적분의 기본정리
[정리:정적분의 기본정리] 함수 f(x)가 [a, b]에서 연속이면, F(x) = ∫_{from a to x} f(t) dt 로 정의된 함수 F(x)는 [a, b]에서 미분 가능하며 F'(x) = f(x)를 만족한다.
를 다시 상기해보세요. 사실상 우리가 더 즐겨 쓰는 것은 이것의 따름정리인
[따름정리] f(x)가 [a, b]에서 연속이고 F(x)가 f(x)의 임의의 부정적분이면, ∫_{from a to b} f(x) dx = F(b) - F(a) 이다.
이지만, 그것보다 더 근본적인 것이 바로 정적분의 기본정리입니다. 그리고 이에 의해서
d/dx{ ∫_{from 3 to x} (x - t)f(t) dt }
= d/dx { x∫_{from 3 to x} f(t) dt } - d/dx { ∫_{from 3 to x} f(t) dt }
= ∫_{from 3 to x} f(t) dt + xf(x) - xf(x)
가 됩니다. 여기서 두 번째 등호에 정적분의 기본정리가 매우 명확하게 자기주장을 하면서 쓰인 것이 보이시나요?
친절한 답변 감사드립니다 !! 계속 보면서 이해할게요!