4년만에 오르비를 다시 와봤더니 난장판이네요. 무한과 극한에 대하여 심히 잘못된 생각을 가진 분들이 많으신데, 0.999… 는 정확하게 1입니다. 아니, 다른 식으로 말하면 0.999…라는 식은 1의 또 다른 이름입니다. 마치 金田一이나 김전일이나 다 똑같은 사람을 가리키는 것과 같은 논리입니다.
개중에는 자꾸 무한소니 접근하는 중이니 하는 이상한 소리를 하시는 분들이 있는데, 개인적으로 교과서에서 극한을 어떻게 정의하는지 필히 복습해보시기 바랍니다. 제가 비록 7차과정 세대이고, 교과서도 그 시절 것밖에 없지만, 어차피 기본적인 내용은 크게 변하지 않았으니 7차 교과과정 대한교과서 수1 교재에서 극한의 정의를 발췌해보겠습니다.
'(전략)... 일반적으로, 무한수열 {a_n}에서 n이 한없이 커질 때, 일반항 a_n이 어떤 일정한 실수값 α에 한없이 가까워지면 수열 {a_n}은 α에 수렴한다고 하고, α를 수열 {a_n}의 극한값 또는 극한이라고 한다. 수열 {a_n}이 극한값 α에 수렴하는 것을 기호로 lim_{n→∞} a_n = α 또는 n→∞ 일 때 a_n → α 와 같이 나타낸다. ...(후략)'
입니다. 무슨 소리냐 하면, 어떤 수열의 극한값이라는 것은, 특정한 성질 (수열이 점점 어떤 값에 다가간다는 성질) 을 지닌 각각의 수열마다 그 성질에 대응되는 한 실수값을 대응시키는 개념이 바로 극한이라는 것입니다. 따라서 0.999… 를 적어도 극한으로 이해하는 한, 이 식이 가리키는 것은 어떤 다가가는 상태가 아닌, 더도 덜도 아닌 1이라는 실수 그 자신입니다. 0.999…는 1을 표현하는 또 다른 방법에 불과하지 않는다는 것입니다.
개인적으로는 대학교에서 극한을 정의할 때 사용하는 입실론-델타 논법도 설명하고 싶은 욕심도 있긴 하지만... 어차피 말장난에 불과한 정의보다는, 수열과 그 극한값이 각각 어떤 것들이고 서로 어떤 관계를 갖는지에 대하여 조금은 이론적인 고민을 해 보는 것이 훨씬 나아보이네요. 이론적인 것을 등외시하면 이런 치명적인 개념 오류가 발생할 수 있으니까요. (세상에, 언젠가 모의고사에서 절대값 함수를 다항함수라고 생각해서 선택형 문항을 우루루 틀렸다는 이야기를 들었을 땐 기절하는 줄 알았는데 말이지요 -_-;;)
답은 1임
lim (x->-1) [x] 잖아여 극한값은 0이에요. 애초에 0.9999999999999999.........이말이 어떤 정해진 수가 아니라 증가하는 상태를 물어보는 것이기 때문에 저것은함숫값이 아니라 극한을 물어보는 거에요.
4년만에 오르비를 다시 와봤더니 난장판이네요. 무한과 극한에 대하여 심히 잘못된 생각을 가진 분들이 많으신데, 0.999… 는 정확하게 1입니다. 아니, 다른 식으로 말하면 0.999…라는 식은 1의 또 다른 이름입니다. 마치 金田一이나 김전일이나 다 똑같은 사람을 가리키는 것과 같은 논리입니다.
개중에는 자꾸 무한소니 접근하는 중이니 하는 이상한 소리를 하시는 분들이 있는데, 개인적으로 교과서에서 극한을 어떻게 정의하는지 필히 복습해보시기 바랍니다. 제가 비록 7차과정 세대이고, 교과서도 그 시절 것밖에 없지만, 어차피 기본적인 내용은 크게 변하지 않았으니 7차 교과과정 대한교과서 수1 교재에서 극한의 정의를 발췌해보겠습니다.
'(전략)... 일반적으로, 무한수열 {a_n}에서 n이 한없이 커질 때, 일반항 a_n이 어떤 일정한 실수값 α에 한없이 가까워지면 수열 {a_n}은 α에 수렴한다고 하고, α를 수열 {a_n}의 극한값 또는 극한이라고 한다. 수열 {a_n}이 극한값 α에 수렴하는 것을 기호로 lim_{n→∞} a_n = α 또는 n→∞ 일 때 a_n → α 와 같이 나타낸다. ...(후략)'
입니다. 무슨 소리냐 하면, 어떤 수열의 극한값이라는 것은, 특정한 성질 (수열이 점점 어떤 값에 다가간다는 성질) 을 지닌 각각의 수열마다 그 성질에 대응되는 한 실수값을 대응시키는 개념이 바로 극한이라는 것입니다. 따라서 0.999… 를 적어도 극한으로 이해하는 한, 이 식이 가리키는 것은 어떤 다가가는 상태가 아닌, 더도 덜도 아닌 1이라는 실수 그 자신입니다. 0.999…는 1을 표현하는 또 다른 방법에 불과하지 않는다는 것입니다.
개인적으로는 대학교에서 극한을 정의할 때 사용하는 입실론-델타 논법도 설명하고 싶은 욕심도 있긴 하지만... 어차피 말장난에 불과한 정의보다는, 수열과 그 극한값이 각각 어떤 것들이고 서로 어떤 관계를 갖는지에 대하여 조금은 이론적인 고민을 해 보는 것이 훨씬 나아보이네요. 이론적인 것을 등외시하면 이런 치명적인 개념 오류가 발생할 수 있으니까요. (세상에, 언젠가 모의고사에서 절대값 함수를 다항함수라고 생각해서 선택형 문항을 우루루 틀렸다는 이야기를 들었을 땐 기절하는 줄 알았는데 말이지요 -_-;;)