행렬 문제 풀어주세요!
Q. 두 이차정사각행렬 A,B가 A(B+E)=E, AB-BA=A+B를 만족시킨다. 물음에 답하시오.
(1) (B+2E)^-1 = pA+qE 일 때, p,q의 값을 구하시오.
(2) (AB)^2 = nA 일 때, n의 값을 구하시오.
=============================================================================
오늘 저희학교 중간고사 문제였는데요..맞은애가 없네요 ㅋㅋ
이과반이고, 전교권에서 든다는 아이들도 손도 못댄 문제라는 ㅋㅋ
(아무래도 시간 제한이 있으니..)
ㅠㅠ 독동분들 중에 풀어주실분 계신가요..?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지역인재라 그런가
-
학교등교하는데 0
전선들 내려앉고 나뭇가지 부러진거보면 심하긴 심하네
-
진짜 존나웃기다 ???:반대 없으신가요 그럼 표결하겠습니다 중국양회보면...
-
일 확률 있을까요? 걱정되네요
-
질문 받아요 7
병원에 진료받으러 와서 심심함요
-
아멘
-
아파트헬스장이고 오전에는 사람많음.. 점심시간이 답인가
-
“소방 출동 잘하나 보려고” 논에 불 지른 경북도의원들 ‘황당’ 신고 4
[파이낸셜뉴스] 경북도의회 건설소방위원회 소속 도의원들이 소방 출동 태세를...
-
러기숙에서 재수할건데 현역 미적 6모9모수능 223떳는데 기하할까요 미적할까요
-
왜 이러는 건가요?
-
진짜 휴강안해? 3
아에반데
-
김천이당 10
이제 1시간만 더 가면 된당 한 숨 잘까
-
에이어가 압도적으로 더 어렵다고 생각하고 나머지 영역에서 시간단축도 6평이 훨씬...
-
결석할지언정 등교하지않는다
-
성적표 온라인 0
그 한국교육평가원장 찍힌 거 말고 표 형태로 표점 확인하는 거 폰으로 안되나요 작년...
-
노래방 도우미만해도 월 천만원씩 버는데 왜 안되는 공부같은거 굳이해가면서 등록금...
-
시뮬레이션이 ㅈㄴ 가서 걍 바로 자살하고싶다 하... 진짜 ㅈ같네
-
케바케인가
-
군모닝 4
좋은 아침
-
고경제는 제가 가야함
-
1 2 3 권 이렇게 구성되어있던데 몇개년 기출인거에요?
-
눈오는데 면접 1
내일 서울대 면접인데 ㅈㄴ지방사는데 어카냐 비행기 결항당함
-
저희 부모님은 성적에 대해 별말 없으셨습니다 그냥 모의고사 보면 잘봤니? 정도랑...
-
현재 대성패스 끊었고 김승리t 이미지t 션티t 풀커리 타려고 합니다. 근데 수학...
-
1. 몇시에 일어나는 게 적당함? 2. 기껏 일찍 일어나놓고 아침부터 공부 안 하고...
-
찜질방에서 잔다음 내일 대전 들렸다가 올라오고 싶기도 하고..
-
그냥 아빠가 말하는 한마디 한마디가 거슬리고 예민하게 반응하게 되요... 재수허락...
-
머리가 띵~ 4
머리가띵
-
이번에 김범준T의 강의를 듣습니다. 근데 김범준T의 스타팅블록을...
-
ㅇ ㅇ?
-
부산까지는 얼마나 지연되려나..
-
못간다 학교이거
-
수위 높은 장면은 안 나오겠지? 예전에 이런 장면 나온적 있어서 먼가 안 될거...
-
어떻게 예상 커트라인이 417 ㅋㅋㅋㅋㅋㅋㅋ
-
어어
-
촤하하하하핫!!극락이구나
-
전투휴무 줘라 0
이거 출근 어떻게 함ㅠㅠ
-
걍 자휴때림 0
ㅇㅅaㅇ 못가 ㅅㅂ
-
모닝여캐일러투척 19
애니는 안 보고 프사로 쓰는 사람들 보면 괘씸하거든요
-
사장님 0
저도 오늘 출근 하기 싫어요잉,,,,
-
얼버기 5
얼리 버드 기상
-
먹어도 되려나 소리때문에 흠.. 이정도는 오케이인가
-
학교 휴업하네 0
-
이번에 수1,수2 김범준T 듣는데, 스타팅블록2~5등급이 듣기에 좋다고 하시더라구요...
-
한국식 세는 나이로 25살에 교수. 남학생이 군대 갔다 왔다고 치면 4학년때 자신과...
-
승쫑인데 롤 10연패해서 밤새가지고 어떡하지 싶었는데 이런일이?
-
43이 되는 가능세계는 없겠지?? 아무리 높아도 42지??
-
돌아가는 분위기가 매우 흥미롭군요 정부가 의평원 무력화 하는걸 포기했네요? 그런데...
-
8일뒤성적표공개 0
시간빠르뇨
A+B=O 이용하면 쉽게 풀릴꺼 같은데...
p=q=1/3
n=-1
1번 1/3,1/3 ?
2번은 -1 ?
AB-BA=A+B
AB=BA
A+B=O
B=-A
A(B+E)=E
A(-A+E)=E
-A^2+A=E
-> A^2-A+E=O
-> A^2=A-E
(1) (B+2E)^-1 = pA+qE 일 때, p,q의 값을 구하시오.
(B+2E)^-1 = (-A+2E)^-1
A^2-A+E=(-A+2E)(-A-E)+3E=O
(-A+2E)(-A-E)+3E=O
=>(-A+2E)(1/3A+1/3E)=E
(2) (AB)^2 = nA 일 때, n의 값을 구하시오.
(AB)^2=A*-A*A*-A=A^4
A^4=(A-E)(A-E)
=A^2-2A+E
=>-A
1/3,1/3, -1?
1번 문제입니다.
사실 1번 문제의 표기를 제가 파악하지 못했습니다!
저는 여기서 (B+2E)^-1 을 (B+2E)^2-E로 해석하고, 문제 풀이에 들어가도록 하겟습니다!
문제 조건을 확인해봅시다. A(B+E)=E를 통해. A와 B+E는 역행렬 관계, 따라서 A(B+E)=(B+E)A=E. 즉
교환 법칙이 성립합니다!
아하! AB=BA구나!
두번째 조건을 확인해봅시다. AB-BA=A+B라는 조건입니다. 앞 조건에서 AB=BA임을 확인하엿고.
따라서 A+B=O임을 확인했습니다. 오호~A=-B이구나!
(B+2E)^2-E=B^2+4B+3E입니다.
위에서 A(B+E)=E에서 A를 -B로 치환합시다. 호오~ -B^2-B=E. 즉 B^2+B+E=0이구나!
방금 연산으로 B^2=-B-E임을 확인. 자 위 식에 대입해볼까요!
계산해보면. 3B+2E입니다. 위에서 구한 조건에서 B=-A인것은 확인하셧는지요.
다시 B행렬을 -A로 바꿉시다. 그렇다면 -3A+2E가 나옵니다.
따라서 p=-3. q=2가 나옵니다. 제 풀이가 맞는지요?
감사합니다,
님 박승동T 아니죠
당연히 아니죠
이미 말하고 합니다
닉 바꾸기까지 17일 남았습니다
기다려주세요 ㅠㅠ
두번째 문제 풀이 들어가겠습니다. 첫번째 조건을 파악하였다면 상당히 쉽습니다!
(AB)^2 = nA
를 구하는 문제입니다.
직접 써보시면 됩니다. 간단합니다!
일반적인 행렬은 교환법칙이 성립하지 않습니다. ABAB=A^4가 나옵니다.
A^4에 관한 식을 만들어볼까요? 역시 위에서 A(B+E)=E를 이용합니다. B에다가 -A로 행렬식으로 바꾸면
-A^2+A=E입니다. 양쪽에 A^2을 곱해봅시다. -A^4+A^3=A^2입니다.
따라서 A^4=-A^2+A^3입니다.
자 그럼 방금 구한 행렬식을 같은 방법으로 바꿉시다!. A^3은 A^2-A이므로.역시 A^3의 행렬식을 바꾸면
A^4=-A가 나옵니다.
따라서 n은 -1입니다. 제 풀이가 맞는지요?
감사합니다,
지금에서야 봤는데..승동神님 하고 위에 비밀글 달아주신 분들하고 답이 다르네요..
2번은 -1이 맞는데 1번이 1/3인지, -3 /2 인지 모르겠네요..지금 답지가 없어서..ㅠㅠ
확인되는대로 다시 올릴께요~
으..모두들 감사합니다..ㅠㅠ
그럼 제가 틀렷을껍니다 ㅠㅠㅠ
실제 승동신에 반도 못미치는 양민입니다 ㅠㅠㅠㅠ
혹시 제 풀이 다시 검토해보시고
문제 있다면 다른 분들 풀이가 맞을껍니다
그리고 윗글 비추 상쇄좀 ㅠㅠㅠ
근데 승동神님 말투로 설명해주시니까 이해가 잘되네요 ㅋㅋㅋ 왠지