[신성고] 수학2 기말고사 손풀이 + 해설 영
안녕하세요. 수학의 판도를 바꾸는 Math Changer 어수강 박사 (과천 "어수강 수학" 원장)입니다. 오늘은
[신성고] 2023년 2학년 2학기 수학2 기말고사 손풀이 + 해설 영상
를 포스팅 하도록 하겠습니다.
PS. 신성고 학생이 아니더라도 시험 준비에 크게 도움이 될거라 생각합니다.
1 페이지는 무척 쉬우므로 해설은 생략합니다.
2 페이지도 무척 쉽지만 코멘트 하나만 할게요!
[6번 문항] 평균값 정리가 상당히 유용한 정리임에도 이와 같이 무의미한 형태로 출제되는 것이 상당히 안타깝습니다. ㅠ_ㅠ
이제 3 페이지를 볼까요?
[10번 문항] 미지수가 2개 (a와 f(x)의 상수항)이므로 등식을 2개 이상 얻어내면 되겠죠? 주어진 식의 양변에 x=0을 대입, 주어진 식의 우변을 적분한 후에 x=a, x=1을 대입하면 계산 문제가 될 것 같네요!
위와 같은 풀이도 당연히 가능하지만, 조금 더 계산이 간단하면 좋겠죠?
저는 함수의 그래프를 이용하여 방정식 f(x)=f(a)에서 x=a가 삼중근임을 알아낸 뒤, 인수정리를 이용하여 가볍게 풀었습니다. 시험에서 이와 같은 풀이를 찾아낼 수 있다면, 시간 절약은 물론 실수할 가능성도 크게 낮출 수 있겠죠?
고등수학에서는 복잡한 것을 그대로 계산하는 것은 학습목표가 아니므로 "복잡한 것을 간단히"하는 도구 또는 아이디어에 초점을 맞추고 공부할 것을 강력하게 권장합니다!
[11번 문항] [12번 문항] 문제에 주어진 조건에서 원하는 것을 얻어내기 위해 한 단계 한 단계 차근차근 풀면 그리 어렵지 않습니다. (feat. 삼단논법!) 이때, 문제의 포인트는 미지수가 a, b 두 개인데, 등식이 하나라는 것이겠죠?
미지수의 개수를 줄이거나 식의 수를 늘려야 하는 상황입니다! 저희 수업에서는 이런 상황에 대처할 수 있는 방법을 매 시간 강조하고 있는데요. 이 문제의 경우, 모든 항의 차수가 같으므로 양변을 하나의 문자로 나누면! 분수식(a/b 또는 b/a)을 하나의 문자로 볼 수 있게 됩니다!
그 뒤론 쉽게 풀 수 있겠죠?
이제 4 페이지를 볼까요?
[13번 문항] 주어진 등식으로부터 f(x)가 삼차식임을 알아낼 수 있다면, f(x)의 계수를 문자로 두고 풀면 되겠죠? 하지만 연속함수 f(x)에 대하여 f(x+1)-f(x)가 이차식이라고 해서 f(x)가 삼차식이라는 것을 배운 적이 없기 때문에 주의해야 합니다. 서술형이라면 크게 감점되겠죠?
구간의 길이가 1/2, 1인 정적분 값을 이용해서, 삼단논법으로 주어진 것에서부터 구하는 것으로 차근차근 나아가면 쉽게 풀 수 있습니다! 자세한 풀이는 해설 영상을 참고 해주세요 :)
[14번 문항] 원의 넓이를 시각 t에 대한 식으로 나타내면 되겠죠? :)
[16번 문항] 직접 계산은 너무 복잡하네요! 저는 근과 계수의 관계를 이용해서 간단히 풀었습니다 :)
마지막으로 5 페이지입니다.
[17번 문항] 교점의 좌표를 문자로 놓고 식을 세우면 되겠죠?
[18번 문항] 그래프의 대칭성 & 인수정리를 이용하면 간단히 풀 수 있겠네요! [11번], [12번] 문항과 마찬가지로 a, b에 대한 4차식에서 모든 항의 차수가 4차로 같으므로 양변을 a의 네 제곱으로 나누면? (b/a)를 한 문자로 볼 수 있겠죠? :)
[19번 문항] 그래프의 개형을 이용하면 쉽게 풀 수 있습니다. 이때, 사람 손으로 그리는 그래프는 컴퓨터처럼 정확하지 못하기 때문에 기준을 설정하는 것이 중요하겠죠? 이 문제에서는 원점에서의 미분계수(혹은 좌미분, 우미분계수)가 y=h(x)의 기울기의 관계에 초점을 맞추는 것이 중요합니다.
[18번]. [19번]의 자세한 풀이는 영상을 참고 해주세요!
[20번 문항] 연속 조건을 이용해서 함수 f(x) 및 k의 값을 알아내면 되겠죠? 이후 넓이를 t에 대한 식으로 나타낸 후 풀면 됩니다. 이때, t의 값이 0보다 크고 6보다 작은 양수일 때, 넓이를 구해야 하는 도형이 하나의 삼각형이 아니라, 삼각형 3개로 이루어진 도형이라는 사실에 주의해야 합니다.
그리고 이때 S(t)를 식으로 나타내면, S(t)가 미분가능하지 않기 때문에 출제 오류임을 알 수 있습니다. (손풀이에서는 출제 의도대로 답을 냈지만, t=6에서의 좌미분계수는 양수, 우미분계수는 음수가 되므로 모순입니다!)
[18번 문항] 해설 영상입니다.
[19번 문항] 해설 영상입니다.
지금까지
[신성고] 2023년 2학년 2학기 수학2 기말고사 손풀이 + 해설 영상
를 포스팅 해보았습니다.
특별한 아이디어나 발상을 요구하는 문제는 없지만 전반적으로 쉬운 시험은 아니라 생각되네요. 배운 것에 근거해서 문제를 분석하는 과정을 생략하고, 경험이나 느낌에 의존해서 손 나가는데로 풀면 계산이 너무 복잡하거나, 잘못된 방향으로 가다가 시간만 뺏기고 답을 내지 못하는 문제가 많을거라 생각됩니다. 시험에서 이렇게 되면 멘탈도 흔들리게 되므로 점수가 폭락할 가능성이 높습니다.
반면, 배운 것에 근거해서 차근차근 문제를 분석한 후, 차근차근 풀면 (특별한 아이디어나 발상을 요구하는 문제가 없기 때문에) 무난한 시험이 될 것 같습니다. 그러니 항상 기본에 충실하기 바랍니다.
2. 거의 모든 고난도 문항에 즉각 적용 가능한 치트키 2 : https://orbi.kr/00062194726
3. 문자의 개수 vs 식의 개수 (feat. 연세대) : https://orbi.kr/00064497772
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
구문 공부했을 때 달달달 외웠어요? 어케 공부하심
-
. 10
-
이더리움 너만 믿는다
-
마더텅 vs 자이스토리 뭐가 더 GOAT인가 (수학편) 8
무엇이 더 고트인가 (해설지, 문제 구성 등 다양한 요인 고려)
-
내 상식이 잘못된건가 싶음 위약금 안내고 나오는게 가능한거임? 변호사들 빵빵하게...
-
일단 무념무상 무지성 현역마인드로 긴장감 없이 벅벅 쳐서 69보다 잘 봄ㅋㅋㅋㅋㅋㅋㅋ
-
김승리 현강에 메가패스 끊을건데 메가패스에서 들으려면 누구 들어야 하나요….? 거의 노베입니다
-
수학임 100점이라는 점수 캡이 있기에 이새끼에 과투자하면 대학못감
-
현역이었고 국어 시작 1분 전 까지도 평온했는데 비문학 풀 때 무의식적으로 긴장을...
-
배고프뇨...
-
안녕하세요, 대학 입시판을 떠난지도 10년이 훌쩍 넘어 수험과 무관한 삶을...
-
어차피 술자리든 미팅이든 못 갈 텐데 수능 한 달 전처럼 내내 공부만 하면 조졸...
-
장수생의 안락사
-
이 장면의 의미가 너무 눈물 나와 ㅠㅠㅠ
-
과외 시급 8
수학/생명 인설치가면 얼마쯤 받으려나.. 수학 점수 24 100 100 88 25...
-
국수탐 3
센츄리온 기준 국수탐 291 메가스터디 기준 설자전 안정 국수탐 294 에피옵티무스...
-
본인 여자고 몸매좋고 존옌데 한국남자들 나보다 키작아서 다가오기 부담스럽나봐 아무도...
-
히라가나 가타가나도 아직 다 못 외은 뉴비임 갈길이 멀다..
-
전대 정시 4
언매 미적 생윤 사문 61 66 18 36이 점수인데 전대 정시로 합격가능한 과가 있나요
-
이제 키보드에 15
채영 누나야가 1순위로 뜬다..
-
만점받은과목수 조사 58
영어1도 만점으로 침
-
지균 받을 수 있을 것 같은데 서울대는 무리일까요...?
-
전대 독어독문 0
전대 정시 독어독문 4.67이 붙을수있을까요
-
고2 모고 수학 2-4진동하면 시발점 수분감 루트가 맞는 건가 6
아니면 노베 공수 12루트 찍고 뉴런수분감 병행 루트가 맞는 건가
-
뭐가 당청됐다는 건데 낙지야
-
일단 저는 메가: 현우진, 윤성훈쌤 대성 : 김승리, 션티 임정환쌤 들을건데 이...
-
그 빡센 4합 5 말고 중대식 4합 5 영어2도 영어1로 취급 탐구 1개만 반영
-
???
-
뻥임뇨
-
맞팔해주쇼. 6
50이눈앞임뇨
-
문과 과탐 선택 1
문과 대학 중에 사탐 선택하면 가산점 있다고 들었는데 사탐1, 과탐 1도...
-
ㄹㅇ
-
업데이트하니까 알람센터 위젯 안뜨고 시계도 좌측정렬돼버리는데 이런분 있으신가요?
-
돈좀벌자
-
26수능 준비하는데 김승리쌤 올오카, 유대종쌤 언매총론같은 강의들 25버전으로...
-
쪽ㅈ주세염!!!
-
오늘도 간절히 빕니다...
-
셤공이나해겠어요
-
그치만 한국에선 꼬추떼도 여자로 인정안해주는걸 ㅠ 군대도 안가고 애도 안낳는...
-
새로이사온애가 5
많이 시끄럽다..여긴 방귀만 뀌어도 옆방에 다 들리는 곳인데 참교육해야하나
-
에피츄 vs 센츄 19
뭐가더 공부잘하는거에요
-
이미 다 털렸으려나 좌표 -100, 0
-
으어
-
역시 옯뉴비가 많네요
-
과외를 할 때 실제 간 학벌말고 합격학벌도 보나요? 10
그니까 예를들어 정말 어쩌다 보니 의대랑 서성한을 붙고 의대가 싫어서 서성한을 간...
첫번째 댓글의 주인공이 되어보세요.