[자작] 간단한 수열 문제 하나 풀어보세요
공모하기에는 개인적으로도 객관적으로도 문제가 많이 아쉬워서 여기에라도 올려봅니다..!
"두 집합이 같다" 와 수열을 합치니까 적지 않은 수험생들이 실수를 하더라구용 ㅇㅅㅇ
당장 거창한 아이디어가 없어서 기본 구조만 후다닥 만들어서 탄생한 문항..
(2024학년도 6월 12번 발문 참고해봤습니다)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
명지대 인문 계열 ㄱㄴ? 더 낮게 잡아야 하나... 상향 쓸 거면 어디 쓰는 게 나음
-
사실 별거 없는거같긴함 국어 재능충이고(2024년 국어순공 30시간 미만 독서 기출...
-
게임 접속을 못하겠어 요즘... 다인모드를 해봐야하나
-
ㅈㄱㄴ
-
03 5수(군수)생들아 우리같은 미친 개새끼들이 왜 무서운지 알아? 물리면은...
-
사탐런 할려는데 강사 누구들을지 모르겠음 ㅠㅠ 생윤은 임정환 들을거같은데...
-
둘다 대머리
-
단속기간이라
-
공부가 재밌음. 수능 공부든 대학 공부든, 각각 다른 재미가 있음. 수능 공부는...
-
예비고1인데 작수 2뜸 국어에 시간 쓸 바엔 수학에 투자하는게 맞는 것 같은데...
-
물빨하지 말자 씨발년놈들아
-
아빠가 마트에서 세계 맥주 랭킹 순으로 사와서 마심 다 마신 건 아니고 몇 모금씩...
-
화생으로 수능으로 봐도 됨? 유전이랑 중화반응에서 먹음
-
www.instagram.com/ijeoxen56/
-
이감 파이널 모의고사 10회분 5만원에 팔아요 시즌5 4회차,시즌6 6회차입니다...
-
다메다메 다메요 3
이거 벌써 4년 됨 ㅋㅋㅋㅋ
-
다메다메
-
없어서 강기본 듣고나서 김승리 풀커리 탈려고 하는데요....ㅜㅜ
-
올해도 민지와 랄선생님과 함께 크리스마스를 보낼 테니 솔크는 아니겠지요
-
여기 2명 뽑는데 막판에 18명 더 들어옴 ㅅㅂ ㅋㅋㅋㅋㅋ
-
ㅈㅂ
-
언매공부개열심히했는데 엉엉
-
전에 그림그릴때도 학원에서 1등을 못해봤고 가장 잘하는 과목도 1컷이 한계고 롤도...
-
솔직히상황만되면 0
한번더하고싶은데 그럴여건이아닌게슬프다 그래도좀늘었는디
-
45444 노베재수생이에욤. 서울런 찬스로 3사패스 다 보유중 1.국어 (고민중)...
-
아먀먀 왜케 귀엽지 10
흐흐
-
화작 93백분위 93뜨고 미적 92 백97뜨면 진짜 좆될듯….
-
모두가행복
-
홍대만 기다리고있는데 언제쯤 결과가 나올지.....
-
집에서 니가 수능을 보던 말던 별 상관없고 놀라워하지도 않는다.. 니가 살았는지도 모른다..
-
기하 만표 143 이면
-
수학한문제가계속아른거리네 29번은예상범위에없었어틀릴줄몰랐다고....
-
와 상상도못했다
-
이미지 써드림 9
ㄱㄱ
-
올해의 밈 1
5월부터 지금까지 계속되는 이 드립 "정상화"
-
역겨운 인간들이 너무 많아서 정리하고싶음
-
환급형이 안 된다는건가? 가격이 더 오른다는건가? 아시는 분 있으면 알려주세요!
-
휴르비 전 무물 1
고고
-
왜계속떨어짐 ?
-
전 내일 여자친구랑 놀기로 했는 데 여자친구가 아직 없다네요~
-
라인 같은 걸 몰라서 궁금해요 어느정도일까 대체..
-
물어보는게 이상한건아는데ㅠ 수학 96 100맞으면 높2까진 커버되려나
-
어떻게 지방의 확률이 인설약보다 높게 나오지.. 진학사는 죄다 1~3칸이긴 함ㅋㅋ ㅜ
-
집에 가려면 야간에 고속도로를 타야해요
-
수면시간 0
다들 몇시간 자시나요? 수시 챙기는 고등학생인데 몇 시간이 적절한지 고민입니다. 늘...
-
예전에 공무원 시험 준비하는 만화 보면서 한심했는데 0
내가 공무원 시험 준비하는 만화 주인공처럼 되는 느낌이라 ㅈ된거 같음
-
맞팔구 1
https://orbi.kr/00070001071/%EB%B2%84%EA%B1%B0%...
-
맞팔 할 사람도 구함다..!!
-
ㄱㅊ?
-
시립대 고속 0
지금 적정이면 나중에 떨어지더라도 추합 안정권에는 있을수있는건가용
2번??
매력적 오답에 당첨되셨습니다
왜 87이 나오지
저도 87나옴
1,-3,4,-5,...,-9,2
87 맞아용
왜 선지에 없나요.. 이거때매 계속 고민했네요
아
선지 편집 실수가.. ㅠㅠㅠㅠㅠㅠㅠ
알려주셔서 감사합니다
밑에 성함있어용
알려주셔서 감사합니다 !!
옆동네에 이미 이름 걸고 실모/N제 배부한 적 있어서 괜찮습니다 !!
풀이는 간단합니다.
구하는 합을 S라 하면 삼각부등식에 의해
S≤(|a_1|+|a_2|)+(|a_2|+|a_3|)+...+(|a_8|+|a_9|)=2*(|a_1|+|a_2|+...+|a_9|)-|a_1|-|a_9|
=90-|a_1|-|a_9|≤90-1-2=87.
아 이런걸 삼각 부등식이라고 부르나요 ??
만들 때 했던 생각이랑 똑같은데 명칭이 있는지는 몰랐네요 ㅇㅅㅇ
넵 삼각형의 세 변을 x,y,z라 할 때 z가 최대이면, z≤x+y라는 거죠. (등호는 넓이가 0)
이를 벡터 공간에서 보면 ||z||=||x+y||≤||x||+||y||인 것이고요.
x,y가 단순히 실수일 때 |x+y|≤|x|+|y|라는 식과 같아지는 것이죠.
오오 새로운거 잘 배워갑니다 !!